Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Historical Perspective
  • Published:

A brief history of error

Abstract

The spindle checkpoint monitors chromosome alignment on the mitotic and meiotic spindle. When the checkpoint detects errors, it arrests progress of the cell cycle while it attempts to correct the mistakes. This perspective will present a brief history summarizing what we know about the checkpoint, and a list of questions we must answer before we understand it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tension at kinetochores regulates their attachment to microtubules.
Figure 2: A model that unifies aspects of different models for the spindle checkpoint.

Similar content being viewed by others

References

  1. Boveri, T. in Foundations of Experimental Embryology (eds Willier, B. H. & Oppenheimer, J. M.) 74–97 (Prentice-Hall, 1964).

    Google Scholar 

  2. Dixon, W. E. A Manual of Pharmacology (E. Arnold & Co., 1905).

    Google Scholar 

  3. Levan, A. The effect of colchicine on root mitoses in Allium. Hereditas 24, 471–486 (1938).

    Article  Google Scholar 

  4. Barber, H. N. & Callan, H. G. The effects of cold and colchicine on mitosis in the newt. Proc. Roy. Soc. B 131, 258–271 (1942).

    Google Scholar 

  5. Shelanski, M. L. & Taylor, E. W. Isolation of a protein subunit from microtubules. J Cell Biol. 34, 549–554 (1967).

    Article  CAS  Google Scholar 

  6. Weisenberg, R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177, 1104–1105 (1972).

    Article  CAS  Google Scholar 

  7. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9, 33–46 (2008).

    Article  CAS  Google Scholar 

  8. Murray, A. W. & Kirschner, M. W. Dominoes and Clocks: the union of two views of cell cycle regulation. Science 246, 614–621 (1989).

    Article  CAS  Google Scholar 

  9. Weinert, T. A. & Hartwell, L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241, 317–322 (1988).

    Article  CAS  Google Scholar 

  10. Dasso, M. & Newport, J. W. Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 61, 811–823 (1990).

    Article  CAS  Google Scholar 

  11. Minshull, J., Sun, H., Tonks, N. K. & Murray, A. W. MAP-kinase dependent mitotic feedback arrest in Xenopus egg extracts. Cell 79, 475–486 (1994).

    Article  CAS  Google Scholar 

  12. Nicklas, R. B. & Koch, C. A. Chromosome micromanipulation. III. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J. Cell Biol. 43, 40–50 (1969).

    Article  CAS  Google Scholar 

  13. Akiyoshi, B. et al. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468, 576–579 (2010).

    Article  CAS  Google Scholar 

  14. Hoyt, M. A., Totis, L. & Roberts, B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66, 507–517 (1991).

    Article  CAS  Google Scholar 

  15. Li, R. & Murray, A. W. Feedback control of mitosis in budding yeast. Cell 66, 519–531 (1991).

    Article  CAS  Google Scholar 

  16. Li, R. Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc. Natl Acad. Sci. USA 96, 4989–4994 (1999).

    Article  CAS  Google Scholar 

  17. Bardin, A. J., Visintin, R. & Amon, A. A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102, 21–31 (2000).

    Article  CAS  Google Scholar 

  18. Hardwick, K. G. et al. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science 273, 953–956 (1996).

    Article  CAS  Google Scholar 

  19. Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 15, 3118–3129 (2001).

    Article  CAS  Google Scholar 

  20. Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J. Cell Biol. 127, 1301–1310 (1994).

    Article  CAS  Google Scholar 

  21. Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948 (1995).

    Article  CAS  Google Scholar 

  22. Li, X. & Nicklas, R. B. Mitotic forces control a cell cycle checkpoint. Nature 373, 630–632 (1995).

    Article  CAS  Google Scholar 

  23. Stern, B. M. & Murray, A. W. Lack of tension at kinetochores activates the spindle checkpoint in budding yeast. Curr. Biol. 11, 1462–1467 (2001).

    Article  CAS  Google Scholar 

  24. Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041–1044 (1998).

    Article  CAS  Google Scholar 

  25. Kim, S. H. et al. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279, 1045–1047 (1998).

    Article  CAS  Google Scholar 

  26. Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871–1883 (1998).

    Article  CAS  Google Scholar 

  27. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  28. Sudakin, V., Chan, G. K. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20 and MAD2. J. Cell Biol. 154, 925–936 (2001).

    Article  CAS  Google Scholar 

  29. Braunstein, I., Miniowitz, S., Moshe, Y. & Hershko, A. Inhibitory factors associated with anaphase-promoting complex/cylosome in mitotic checkpoint. Proc. Natl Acad. Sci. USA 104, 4870–4875 (2007).

    Article  CAS  Google Scholar 

  30. Miniowitz-Shemtov, S., Teichner, A., Sitry-Shevah, D. & Hershko, A. ATP is required for the release of the anaphase-promoting complex/cyclosome from inhibition by the mitotic checkpoint. Proc. Natl Acad. Sci. USA 107, 5351–5356 (2010).

    Article  Google Scholar 

  31. Teichner, A. et al. p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process. Proc. Natl Acad. Sci. USA 108, 3187–3192 (2011).

    Article  Google Scholar 

  32. Howell, B. J. et al. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol. 14, 953–964 (2004).

    Article  CAS  Google Scholar 

  33. Kulukian, A., Han, J. S. & Cleveland, D. W. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev. Cell 16, 105–117 (2009).

    Article  CAS  Google Scholar 

  34. Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev. 13, 532–544 (1999).

    Article  CAS  Google Scholar 

  35. Tanaka, T. U. et al. Evidence that the Ipl1-Sli15 (Aurora Kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002).

    Article  CAS  Google Scholar 

  36. King, E. M. et al. Ipl1p-dependent phosphorylation of Mad3p is required for the spindle checkpoint response to lack of tension at kinetochores. Genes Dev. 21, 1163–1168 (2007).

    Article  CAS  Google Scholar 

  37. Pinsky, B. A. et al. Glc7/protein phosphatase 1 regulatory subunits can oppose the Ipl1/aurora protein kinase by redistributing Glc7. Mol. Cell Biol. 26, 2648–2660 (2006).

    Article  CAS  Google Scholar 

  38. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001).

    Article  CAS  Google Scholar 

  39. Dawson, I. A., Roth, S. & Artavanis-Tsakonas, S. The Drosophila cell cycle gene fizzy is required for normal degradation of cyclins A and B during mitosis and has homology to the CDC20 gene of Saccharomyces cerevisiae. J. Cell Biol. 129, 725–737 (1995).

    Article  CAS  Google Scholar 

  40. Izawa, D. & Pines, J. How APC/C–Cdc20 changes its substrate specificity in mitosis. Nat. Cell Biol. 13, 223–233 (2011).

    Article  CAS  Google Scholar 

  41. Klotzbucher, A., Stewart, E., Harrison, D. & Hunt, T. The 'destruction box' of cyclin A allows B-type cyclins to be ubiquitinated, but not efficiently destroyed. EMBO J. 15, 3053–3064 (1996).

    Article  CAS  Google Scholar 

  42. Sironi, L. et al. Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J. 21, 2496–2506 (2002).

    Article  CAS  Google Scholar 

  43. Luo, X., Tang, Z., Rizo, J. & Yu, H. The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Mol. Cell 9, 59–71 (2002).

    Article  Google Scholar 

  44. Mapelli, M., Massimiliano, L., Santaguida, S. & Musacchio, A. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131, 730–743 (2007).

    Article  CAS  Google Scholar 

  45. Mapelli, M. et al. Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO J. 25, 1273–1284 (2006).

    Article  CAS  Google Scholar 

  46. Kim, S. et al. Phosphorylation of the spindle checkpoint protein Mad2 regulates its conformational transition. Proc. Natl Acad. Sci. USA 107, 19772–19777 (2010).

    Article  Google Scholar 

  47. Palframan, W. J. et al. Anaphase inactivation of the spindle checkpoint. Science 313, 680–684 (2006).

    Article  CAS  Google Scholar 

  48. King, E. M., van der Sar, S. J. & Hardwick, K. G. Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS One 2, e342 (2007).

    Article  CAS  Google Scholar 

  49. Nilsson, J., Yekezare, M., Minshull, J. & Pines, J. The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat. Cell Biol. 10, 1411–1420 (2008).

    Article  CAS  Google Scholar 

  50. Howell, B. J. et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159–1172 (2001).

    Article  CAS  Google Scholar 

  51. Habu, T., Kim, S. H., Weinstein, J. & Matsumoto, T. Identification of a MAD2-binding protein, CMT2, and its role in mitosis. EMBO J. 21, 6419–6428 (2002).

    Article  CAS  Google Scholar 

  52. Yang, M. et al. p31comet blocks Mad2 activation through structural mimicry. Cell 131, 744–755 (2007).

    Article  CAS  Google Scholar 

  53. Rosenberg, J. S., Cross, F. R. & Funabiki, H. KNL1/Spc105 recruits PP1 to silence the spindle assembly checkpoint. Curr. Biol. 21, 942–947 (2011).

    Article  CAS  Google Scholar 

  54. Meadows, J. C. et al. Spindle checkpoint silencing requires association of PP1 to both Spc7 and Kinesin-8 Motors. Dev. Cell 20, 739–750 (2011).

    Article  CAS  Google Scholar 

  55. Xia, G. et al. Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. EMBO J. 23, 3133–3143 (2004).

    Article  CAS  Google Scholar 

  56. Vink, M. et al. In vitro FRAP identifies the minimal requirements for Mad2 kinetochore dynamics. Curr. Biol. 16, 755–766 (2006).

    Article  CAS  Google Scholar 

  57. Indjeian, V. B., Stern, B. M. & Murray, A. W. The centromeric protein Sgo1 is required to sense lack of tension on mitotic chromosomes. Science 307, 130–133 (2005).

    Article  CAS  Google Scholar 

  58. Karess, R. Rod–Zw10–Zwilch: a key player in the spindle checkpoint. Trends Cell Biol. 15, 386–392 (2005).

    Article  CAS  Google Scholar 

  59. Passmore, L. A. et al. Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBO J. 22, 786–796 (2003).

    Article  CAS  Google Scholar 

  60. Herzog, F. et al. Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 323, 1477–1481 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank members of my laboratory for helpful suggestions, and NIH for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Murray.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, A. A brief history of error. Nat Cell Biol 13, 1178–1182 (2011). https://doi.org/10.1038/ncb2348

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2348

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing