Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Caenorhabditis elegans EFA-6 limits microtubule growth at the cell cortex

Abstract

Microtubules are polymers of tubulin heterodimers that exhibit dynamic instability: periods of growth followed by periods of shrinkage1. However, the molecular regulation of dynamic instability remains elusive. Here, we show that EFA-6, a cortically-localized protein2, limits the growth of microtubules near the cell cortex of early embryonic cells from Caenorhabidits elegans, possibly by inducing microtubule catastrophes. Compared with wild type, embryos lacking EFA-6 had abnormally long and dense microtubules at the cell cortex, and growing microtubule plus ends resided at the cortex for up to five-fold longer. Loss of EFA-6 also caused excess centrosome separation and displacement towards the cell cortex early in mitosis, and subsequently a loss of anaphase spindle-pole oscillations and increased rates of spindle elongation. The centrosome separation phenotype was dependent on the motor protein dynein, suggesting a possible link between the modulation of microtubule dynamics at the cortex and dynein-dependent force production. EFA-6 orthologues activate ARF6-type GTPases to regulate vesicle trafficking3. However, we show that only the C. elegans EFA-6 amino-terminus is both necessary and sufficient to limit microtubule growth along the cortex, and that this function is independent of ARF-6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of EFA-6 affects early microtubule-dependent processes.
Figure 2: EFA-6 prevents long cortical microtubules in one- and two-cell embryos.
Figure 3: EFA-6 limits microtubule growth at the cortex.
Figure 4: Determination of the EFA-6 microtubule-regulating residues.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. O'Rourke, S. M., Dorfman, M. D., Carter, J. C. & Bowerman, B. Dynein modifiers in C. elegans: light chains suppress conditional heavy chain mutants. PLoS Genet. 3, e128 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Franco, M. et al. EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J. 18, 1480–1491 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kozlowski, C., Srayko, M. & Nedelec, F. Cortical microtubule contacts position the spindle in C. elegans embryos. Cell 129, 499–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Siller, K. H. & Doe, C. Q. Spindle orientation during asymmetric cell division. Nat. Cell Biol. 11, 365–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Oegema, K. & Hyman, A. A. Cell division. WormBook, 1–40 (2006).

  7. Dumont, S. & Mitchison, T. J. Force and length in the mitotic spindle. Curr. Biol. 19, R749–R761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grill, S. W., Howard, J., Schaffer, E., Stelzer, E. H. & Hyman, A. A. The distribution of active force generators controls mitotic spindle position. Science 301, 518–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Srayko, M., Kaya, A., Stamford, J. & Hyman, A. A. Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev. Cell 9, 223–236 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Pecreaux, J. et al. Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators. Curr. Biol. 16, 2111–2122 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Severson, A. F. & Bowerman, B. Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans. J. Cell Biol. 161, 21–26 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gönczy, P., Pichler, S., Kirkham, M. & Hyman, A. A. Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. J. Cell Biol. 147, 135–150 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schmidt, D. J., Rose, D. J., Saxton, W. M. & Strome, S. Functional analysis of cytoplasmic dynein heavy chain in Caenorhabditis elegans with fast-acting temperature-sensitive mutations. Mol. Biol. Cell 16, 1200–1212 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hamill, D. R., Severson, A. F., Carter, J. C. & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Phillips, J. B., Lyczak, R., Ellis, G. C. & Bowerman, B. Roles for two partially redundant alpha-tubulins during mitosis in early Caenorhabditis elegans embryos. Cell Motil. Cytoskeleton 58, 112–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Hyman, A. A. & White, J. G. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J. Cell Biol. 105, 2123–2135 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Sammak, P. J. & Borisy, G. G. Direct observation of microtubule dynamics in living cells. Nature 332, 724–726 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Schulze, E. & Kirschner, M. New features of microtubule behaviour observed in vivo. Nature 334, 356–359 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Skop, A. R. & White, J. G. The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Curr. Biol. 8, 1110–1116 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gassmann, R. et al. A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex. Genes Dev. 22, 2385–2399 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macia, E. et al. The pleckstrin homology domain of the Arf6-specific exchange factor EFA6 localizes to the plasma membrane by interacting with phosphatidylinositol 4, 5-bisphosphate and F-actin. J. Biol. Chem. 283, 19836–19844 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Diogon, M. et al. The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces in C. elegans epidermis to control morphogenesis. Development 134, 2469–2479 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Portereiko, M. F. & Mango, S. E. Early morphogenesis of the Caenorhabditis elegans pharynx. Dev. Biol. 233, 482–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Janson, M. E., de Dood, M. E. & Dogterom, M. Dynamic instability of microtubules is regulated by force. J. Cell Biol. 161, 1029–1034 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sönnichsen, B. et al. Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462–469 (2005).

    Article  PubMed  Google Scholar 

  28. Labbé, J. C., Pacquelet, A., Marty, T. & Gotta, M. A genome-wide screen for suppressors of par-2 uncovers potential regulators of PAR protein-dependent cell polarity in Caenorhabditis elegans. Genetics 174, 285–295 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Dorfman, M., Gomes, J. E., O'Rourke, S. & Bowerman, B. Using RNA interference to identify specific modifiers of a temperature-sensitive, embryonic-lethal mutation in the Caenorhabditis elegans ubiquitin-like Nedd8 protein modification pathway E1-activating gene rfl-1. Genetics 182, 1035–1049 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, D., Park, J., Park, S. G., Park, T. & Choi, S. S. Analysis of human disease genes in the context of gene essentiality. Genomics 92, 414–418 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Oegema, K., Desai, A., Rybina, S., Kirkham, M. & Hyman, A. A. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153, 1209–1226 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Strome, S. et al. Spindle dynamics and the role of γ-tubulin in early Caenorhabditis elegans embryos. Mol. Biol. Cell 12, 1751–1764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McNally, K., Audhya, A., Oegema, K. & McNally, F. J. Katanin controls mitotic and meiotic spindle length. J. Cell Biol. 175, 881–891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Warming, S., Costantino, N., Court, D. L., Jenkins, N. A. & Copeland, N. G. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33, e36 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cheeseman, I. M. et al. A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. Genes Dev. 18, 2255–2268 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Price, G. von Dassow, L. Pelletier, and C. Doe for insightful discussions; M. Goulding and E. Munro for technical advice; S. Schneider for advice on taxonomical and sequence alignments; S. Mitani for isolating and providing efa-6(tm3124); V. Davis Haug for the mC-TBA-1 strain; and C. Doe and C. Cabernard for comments on the manuscript. S.M.O was supported by the Leukemia and Lymphoma Society of America, S.M.O. and B.B. are supported by NIH R01GM058017 and R01GMO49869.

Author information

Authors and Affiliations

Authors

Contributions

S.M.O. and B.B. designed the experiments and wrote the paper. S.M.O. conceived the project, performed the experiments and analysed the data. Microscopy and strain generation were also contributed by S.N.C.

Corresponding authors

Correspondence to Sean M. O'Rourke or Bruce Bowerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1677 kb)

Supplementary Movie 1

Supplementary Information (MOV 3453 kb)

Supplementary Movie 2

Supplementary Information (MOV 1554 kb)

Supplementary Movie 3

Supplementary Information (MOV 2919 kb)

Supplementary Movie 4

Supplementary Information (MOV 2093 kb)

Supplementary Movie 5

Supplementary Information (MOV 8655 kb)

Supplementary Movie 6

Supplementary Information (MOV 6129 kb)

Supplementary Movie 7

Supplementary Information (MOV 1341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Rourke, S., Christensen, S. & Bowerman, B. Caenorhabditis elegans EFA-6 limits microtubule growth at the cell cortex. Nat Cell Biol 12, 1235–1241 (2010). https://doi.org/10.1038/ncb2128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing