Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein kinase activity of phosphoinositide 3-kinase regulates β-adrenergic receptor endocytosis

Abstract

Phosphoinositide 3-kinase (PI(3)K) is a unique enzyme characterized by both lipid and protein kinase activities. Here, we demonstrate a requirement for the protein kinase activity of PI(3)K in agonist-dependent β-adrenergic receptor (βAR) internalization. Using PI(3)K mutants with either protein or lipid phosphorylation activity, we identify the cytoskeletal protein non-muscle tropomyosin as a substrate of PI(3)K, which is phosphorylated in a wortmannin-sensitive manner on residue Ser 61. A constitutively dephosphorylated (S61A) tropomyosin mutant blocks agonist-dependent βAR internalization, whereas a tropomyosin mutant that mimics constitutive phosphorylation (S61D) compliments the PI(3)K mutant, with only lipid phosphorylation activity reversing the defective βAR internalization. Notably, knocking down endogenous tropomyosin expression using siRNAs that target different regions of tropomyosin resulted in complete inhibition of βAR endocytosis, showing that non-muscle tropomyosin is essential for agonist-mediated receptor internalization. These studies demonstrate a previously unknown role for the protein phosphorylation activity of PI(3)K in βAR internalization and identify non-muscle tropomyosin as a cellular substrate for protein kinase activity of PI(3)K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipid and protein phosphorylation activity of PI(3)K mutants.
Figure 2: Protein and lipid phosphorylation activities of PI(3)K are required for β2AR internalization.
Figure 3: Lipid phosphorylation activity of PI(3)K is required for AP-2 recruitment to the receptor complex.
Figure 4: Protein kinase activity of PI(3)K phosphorylates a protein with Mr 30K–35K.
Figure 5: Non-muscle tropomyosin is a substrate for protein phosphorylation activity of PI(3)K.
Figure 6: βARK1-mediated endogenous PI(3)K activity at the membrane is required for non-muscle tropomyosin phosphorylation.
Figure 7: Endogenous non-muscle tropomyosin is required for β2AR internalization.
Figure 8: Phosphorylation-deficient tropomyosinS61A mutant blocks transferrin uptake.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Rockman, H. A., Koch, W. J. & Lefkowitz, R. J. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

    Article  CAS  Google Scholar 

  2. Koch, W. J., Lefkowitz, R. J. & Rockman, H. A. Functional consequences of altering myocardial adrenergic receptor signaling. Annu. Rev. Physiol. 62, 237–260 (2000).

    Article  CAS  Google Scholar 

  3. Lefkowitz, R. J. G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18677–18680 (1998).

    Article  CAS  Google Scholar 

  4. Naga Prasad, S. V. et al. Phosphoinositide 3-kinase regulates β2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/β-arrestin complex. J. Cell Biol. 158, 563–575 (2002).

    Article  Google Scholar 

  5. Rameh, L. E. & Cantley, L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347–8350 (1999).

    Article  CAS  Google Scholar 

  6. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  Google Scholar 

  7. Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693 (1995).

    Article  CAS  Google Scholar 

  8. Carpenter, C. L. et al. A tightly associated serine/threonine protein kinase regulates phosphoinositide 3-kinase activity. Mol. Cell. Biol. 13, 1657–1665 (1993).

    Article  CAS  Google Scholar 

  9. Dhand, R. et al. PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J. 13, 522–533 (1994).

    Article  CAS  Google Scholar 

  10. Walker, E. H., Perisic, O., Ried, C., Stephens, L. & Williams, R. L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402, 313–320 (1999).

    Article  CAS  Google Scholar 

  11. Pirola, L. et al. Activation loop sequences confer substrate specificity to phosphoinositide 3-kinase α (PI3Kα). Functions of lipid kinase-deficient PI3Kα in signaling. J. Biol. Chem. 276, 21544–21554 (2001).

    Article  CAS  Google Scholar 

  12. Naga Prasad, S. V., Barak, L. S., Rapacciuolo, A., Caron, M. G. & Rockman, H. A. Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by β-adrenergic receptor kinase 1. A role in receptor sequestration. J. Biol. Chem. 276, 18953–18959 (2001).

    Article  CAS  Google Scholar 

  13. Perrino, C. et al. Restoration of β-adrenergic receptor signaling and contractile function in heart failure by disruption of the βARK1/phosphoinositide 3-kinase complex. Circulation 111, 2579–2587 (2005).

    Article  CAS  Google Scholar 

  14. Ma, A. D., Metjian, A., Bagrodia, S., Taylor, S. & Abrams, C. S. Cytoskeletal reorganization by G protein-coupled receptors is dependent on phosphoinositide 3-kinase γ, a Rac guanosine exchange factor, and Rac. Mol. Cell. Biol. 18, 4744–4751 (1998).

    Article  CAS  Google Scholar 

  15. Nienaber, J. J. et al. Inhibition of receptor-localized PI3K preserves cardiac β-adrenergic receptor function and ameliorates pressure overload heart failure. J. Clin. Invest. 112, 1067–1079 (2003).

    Article  CAS  Google Scholar 

  16. Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).

    Article  CAS  Google Scholar 

  17. Lamaze, C., Chuang, T. H., Terlecky, L. J., Bokoch, G. M. & Schmid, S. L. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382, 177–179 (1996).

    Article  CAS  Google Scholar 

  18. Czupalla, C. et al. Identification and characterization of the autophosphorylation sites of phosphoinositide 3-kinase isoforms β and γ. J. Biol. Chem. 278, 11536–11545 (2003).

    Article  CAS  Google Scholar 

  19. Vanhaesebroeck, B. et al. Autophosphorylation of p110δ phosphoinositide 3-kinase: a new paradigm for the regulation of lipid kinases in vitro and in vivo. EMBO J. 18, 1292–1302 (1999).

    Article  CAS  Google Scholar 

  20. Bondeva, T. et al. Bifurcation of lipid and protein kinase signals of PI3Kγ to the protein kinases PKB and MAPK. Science 282, 293–296 (1998).

    Article  CAS  Google Scholar 

  21. Perry, S. V. Vertebrate tropomyosin: distribution, properties and function. J. Muscle Res. Cell. Motil. 22, 5–49 (2001).

    Article  CAS  Google Scholar 

  22. Pittenger, M. F., Kazzaz, J. A. & Helfman, D. M. Functional properties of non-muscle tropomyosin isoforms. Curr. Opin. Cell Biol. 6, 96–104 (1994).

    Article  CAS  Google Scholar 

  23. Sano, K., Maeda, K., Oda, T. & Maeda, Y. The effect of single residue substitutions of serine-283 on the strength of head-to-tail interaction and actin binding properties of rabbit skeletal muscle α-tropomyosin. J. Biochem. (Tokyo) 127, 1095–1102 (2000).

    Article  CAS  Google Scholar 

  24. Houle, F. et al. Extracellular signal-regulated kinase mediates phosphorylation of tropomyosin-1 to promote cytoskeleton remodeling in response to oxidative stress: impact on membrane blebbing. Mol. Biol. Cell 14, 1418–1432 (2003).

    Article  CAS  Google Scholar 

  25. Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nature Cell Biol. 4, 691–698 (2002).

    Article  CAS  Google Scholar 

  26. Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol. 1, 72–74 (1999).

    Article  CAS  Google Scholar 

  27. Gottlieb, T. A., Ivanov, I. E., Adesnik, M. & Sabatini, D. D. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J. Cell Biol. 120, 695–710 (1993).

    Article  CAS  Google Scholar 

  28. Qualmann, B., Kessels, M. M. & Kelly, R. B. Molecular links between endocytosis and the actin cytoskeleton. J. Cell Biol. 150, F111–F116 (2000).

    Article  CAS  Google Scholar 

  29. Cooper, J. A. Actin dynamics: tropomyosin provides stability. Curr. Biol. 12, R523–525 (2002).

    Article  CAS  Google Scholar 

  30. Rapacciuolo, A. et al. Protein kinase A and G protein-coupled receptor kinase phosphorylation mediates β-1 adrenergic receptor endocytosis through different pathways. J. Biol. Chem. 278, 35403–35411 (2003).

    Article  CAS  Google Scholar 

  31. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    Article  CAS  Google Scholar 

  32. Gaidarov, I. & Keen, J. H. Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits. J. Cell Biol. 146, 755–764 (1999).

    Article  CAS  Google Scholar 

  33. Kohout, T. A., Lin, F. S., Perry, S. J., Conner, D. A. & Lefkowitz, R. J. β-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc. Natl Acad. Sci. USA 98, 1601–1606 (2001).

    CAS  PubMed  Google Scholar 

  34. Johnson, D. A., Akamine, P., Radzio-Andzelm, E., Madhusudan, M. & Taylor, S. S. Dynamics of cAMP-dependent protein kinase. Chem. Rev. 101, 2243–2270 (2001).

    Article  CAS  Google Scholar 

  35. Horne, J., Jennings, I. G., Teh, T., Gooley, P. R. & Kobe, B. Structural characterization of the N-terminal autoregulatory sequence of phenylalanine hydroxylase. Protein Sci. 11, 2041–2047 (2002).

    Article  CAS  Google Scholar 

  36. Naga Prasad, S. V., Esposito, G., Mao, L., Koch, W. J. & Rockman, H. A. Gβγ-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J. Biol. Chem. 275, 4693–4698 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health grants PO1 HL 075443 (to H.A.R) and Beginning grant-in-aid from AHA, Mid-Atlantic affiliate (to S.V.N.P.). A.J. received a Howard Hughes Medical Student Research Award. We thank W. Zou for her excellent technical assistance. We also thank M. Delahunty and X. Q. Zhang for excellent technical assistance with the SF9 cells. We would like to thank J. Richardson and D. Richardson (Department of Biochemistry, Duke University Medical Center) for advice and thoughtful insights on the crystallographic structure of PI(3)Kγ and the PI(3)K mutants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard A. Rockman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and supplementary methods (PDF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naga Prasad, S., Jayatilleke, A., Madamanchi, A. et al. Protein kinase activity of phosphoinositide 3-kinase regulates β-adrenergic receptor endocytosis. Nat Cell Biol 7, 785–796 (2005). https://doi.org/10.1038/ncb1278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing