Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness

Abstract

Connexins are membrane proteins that assemble into gap-junction channels and are responsible for direct, electrical and metabolic coupling between connected cells. Here we describe an investigation of the properties of a recombinantly expressed recessive mutant of connexin 26 (Cx26), the V84L mutant, associated with deafness. Unlike other Cx26 mutations, V84L affects neither intracellular sorting nor electrical coupling, but specifically reduces permeability to the Ca2+-mobilizing messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). Both the permeability to Lucifer Yellow and the unitary channel conductance of V84L-mutant channels are indistinguishable from those of the wild-type Cx26. Injection of Ins(1,4,5)P3 into supporting cells of the rat organ of Corti, which abundantly express Cx26, ensues in a regenerative wave of Ca2+ throughout the tissue. Blocking the gap junction communication abolishes wave propagation. We propose that the V84L mutation reduces metabolic coupling mediated by Ins(1,4,5)P3 to an extent sufficient to impair the propagation of Ca2+ waves and the formation of a functional syncytium. Our data provide the first demonstration of a specific defect of metabolic coupling and offer a mechanistic explanation for the pathogenesis of an inherited human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical conductance and permeability to Lucifer Yellow are normal in homotypic gap-junction channels formed by the V84L mutant of Cx26.
Figure 2: Intercellular transfer of IP3 is impaired in V84L transfectants.
Figure 3: Measurement of Ins(1,4,5)P3 permeability in transfected pairs of HeLa cells.
Figure 4: Intercellular transfer of Ins(1,4,5)P3 in supporting cells of the organ of Corti.

Similar content being viewed by others

References

  1. Harris, A. L. Emerging issues of connexin channels: biophysics fills the gap. Q. Rev. Biophys. 34, 325–472 (2001).

    Article  CAS  Google Scholar 

  2. Gerido, D. A. & White, T. W. Connexin disorders of the ear, skin, and lens. Biochim. Biophys. Acta 1662, 159–70 (2004).

    Article  CAS  Google Scholar 

  3. Jentsch, T. J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Rev. Neurosci. 1, 21–30 (2000).

    Article  CAS  Google Scholar 

  4. Bruzzone, R. et al. Loss-of-function and residual channel activity of connexin26 mutations associated with non-syndromic deafness. FEBS Lett. 533, 79–88 (2003).

    Article  CAS  Google Scholar 

  5. D'Andrea, P. et al. Hearing loss: frequency and functional studies of the most common connexin26 alleles. Biochem. Biophys. Res. Commun. 296, 685–691 (2002).

    Article  CAS  Google Scholar 

  6. Skerrett, I. M., Di, W. L., Kasperek, E. M., Kelsell, D. P. & Nicholson, B. J. Aberrant gating, but a normal expression pattern, underlies the recessive phenotype of the deafness mutant Connexin26M34T. FASEB J. 18, 860–862 (2004).

    Article  CAS  Google Scholar 

  7. Kenna, M. A., Wu, B. L., Cotanche, D. A., Korf, B. R. & Rehm, H. L. Connexin 26 studies in patients with sensorineural hearing loss. Arch. Otolaryngol. Head Neck Surg. 127, 1037–1042 (2001).

    Article  CAS  Google Scholar 

  8. Kelley, P. M. et al. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am. J. Hum. Genet. 62, 792–799 (1998).

    Article  CAS  Google Scholar 

  9. Wang, H. L. et al. Functional analysis of connexin-26 mutants associated with hereditary recessive deafness. J. Neurochem. 84, 735–742 (2003).

    Article  CAS  Google Scholar 

  10. Elfgang, C. et al. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J. Cell Biol. 129, 805–817 (1995).

    Article  CAS  Google Scholar 

  11. Beltramello, M. et al. Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochem. Biophys. Res. Commun. 305, 1024–1033 (2003).

    Article  CAS  Google Scholar 

  12. Verselis, V. K. & Veenstra, R. in Gap Junctions, Vol. 30 (ed. Hertzberg, E. L.) 129–193 (JAI, Stamford, CT, 2000).

    Book  Google Scholar 

  13. Peracchia, C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim. Biophys. Acta. 1662, 61–80 (2004).

    Article  CAS  Google Scholar 

  14. Bukauskas, F. F. & Verselis, V. K. Gap junction channel gating. Biochim. Biophys. Acta. 1662, 42–60 (2004).

    Article  CAS  Google Scholar 

  15. Thomas, D. et al. Microscopic properties of elementary Ca2+ release sites in non-excitable cells. Curr. Biol. 10, 8–15 (2000).

    Article  CAS  Google Scholar 

  16. Saez, J. C., Connor, J. A., Spray, D. C. & Bennett, M. V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc. Natl Acad. Sci. USA 86, 2708–2712 (1989).

    Article  CAS  Google Scholar 

  17. Kam, Y., Kim, D. Y., Koo, S. K. & Joe, C. O. Transfer of second messengers through gap junction connexin 43 channels reconstituted in liposomes. Biochim. Biophys. Acta. 1372, 384–388 (1998).

    Article  CAS  Google Scholar 

  18. Niessen, H., Harz, H., Bedner, P., Kramer, K. & Willecke, K. Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J. Cell. Sci. 113, 1365–1372 (2000).

    CAS  PubMed  Google Scholar 

  19. Niessen, H. & Willecke, K. Strongly decreased gap junctional permeability to inositol 1,4,5-trisphosphate in connexin32 deficient hepatocytes. FEBS Lett. 466, 112–114 (2000).

    Article  CAS  Google Scholar 

  20. Abbracchio, M. P. & Burnstock, G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol. Ther. 64, 445–475 (1994).

    Article  CAS  Google Scholar 

  21. Bennett, M. V., Contreras, J. E., Bukauskas, F. F. & Saez, J. C. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 26, 610–617 (2003).

    Article  CAS  Google Scholar 

  22. Goodenough, D. A. & Paul, D. L. Beyond the gap: functions of unpaired connexon channels. Nature Rev. Mol. Cell Biol. 4, 285–294 (2003).

    Article  CAS  Google Scholar 

  23. Lautermann, J. et al. Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res. 294, 415–420 (1998).

    Article  CAS  Google Scholar 

  24. Gale, J. E., Piazza, V., Ciubotaru, C. D. & Mammano, F. A mechanism for sensing noise damage in the inner ear. Curr. Biol. 14, 526–529 (2004).

    Article  CAS  Google Scholar 

  25. Oh, S. et al. Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron 19, 927–938 (1997).

    Article  CAS  Google Scholar 

  26. Lagostena, L., Cicuttin, A., Inda, J., Kachar, B. & Mammano, F. Frequency dependence of electrical coupling in Deiters' cells of the guinea pig cochlea. Cell Commun. Adhes. 8, 393–399 (2001).

    Article  CAS  Google Scholar 

  27. Lagostena, L., Ashmore, J. F., Kachar, B. & Mammano, F. Purinergic control of intercellular communication between Hensen's cells of the guinea-pig cochlea. J. Physiol. 531, 693–706 (2001).

    Article  CAS  Google Scholar 

  28. Boettger, T. et al. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416, 874–878 (2002).

    Article  CAS  Google Scholar 

  29. Cohen-Salmon, M. et al. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr. Biol. 12, 1106–1111 (2002).

    Article  CAS  Google Scholar 

  30. Forge, A., Marziano, N. K., Casalotti, S. O., Becker, D. L. & Jagger, D. The inner ear contains heteromeric channels composed of cx26 and cx30 and deafness-related mutations in cx26 have a dominant negative effect on cx30. Cell. Commun. Adhes. 10, 341–346 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Telethon Foundation, (Project n. GGP02043), the Ministero dell' Università e Ricerca Scientifica (MIUR, FIRB n. RBAU01Z2Z8, PRIN-COFIN 2002067312_002) to F.M., the Centro di Eccellenza (co-ordinator, T.P.) and the Italian Health Ministry. We thank R. Bruzzone (Institute Pasteur, Paris, France) for helpful comments, S. Bastianello, M. Bortolozzi and C. D. Ciubotaru (Venetian Institute of Molecular Medicine, Padua, Italy) for help with computer programming and image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Mammano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Fig S1, Fig S2 (PDF 364 kb)

Supplementary Information

Movie 1 (AVI 1304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltramello, M., Piazza, V., Bukauskas, F. et al. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 7, 63–69 (2005). https://doi.org/10.1038/ncb1205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing