Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ATR and ATM regulate the timing of DNA replication origin firing

Abstract

Timing of DNA replication initiation is dependent on S-phase-promoting kinase (SPK) activity at discrete origins and the simultaneous function of many replicons1,2. DNA damage prevents origin firing through the ATM- and ATR-dependent inhibition of Cdk2 and Cdc7 SPKs3,4. Here, we establish that modulation of ATM- and ATR-signalling pathways controls origin firing in the absence of DNA damage. Inhibition of ATM and ATR with caffeine or specific neutralizing antibodies, or upregulation of Cdk2 or Cdc7, promoted rapid and synchronous origin firing; conversely, inhibition of Cdc25A slowed DNA replication. Cdk2 was in equilibrium between active and inactive states, and the concentration of replication protein A (RPA)-bound single-stranded DNA (ssDNA) correlated with Chk1 activation and inhibition of origin firing. Furthermore, ATM was transiently activated during ongoing replication. We propose that ATR and ATM regulate SPK activity through a feedback mechanism originating at active replicons. Our observations establish that ATM- and ATR-signalling pathways operate during an unperturbed cell cycle to regulate initiation and progression of DNA synthesis, and are therefore poised to halt replication in the presence of DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caffeine accelerates the initiation of replication.
Figure 2: The effect of caffeine on replication is the result of ATM and ATR inhibition.
Figure 3: Regulation of firing and replication by rate-limiting SPKs and Cdc25A.
Figure 4: ssDNA transiently accumulates and modulates origin firing.
Figure 5: ssDNA regulates the caffeine-sensitive inhibition of origin firing.

Similar content being viewed by others

References

  1. Hyrien, O., Marheineke, K. & Goldar, A. Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. Bioessays 25, 116–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Kelly, T.J. & Brown, G.W. Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829–880 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Shechter, D., Costanzo, V. & Gautier, J. Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair Published online, 27 April 2004 (doi: 10.1016/j.dnarep.2004.03.020).

  5. Hyrien, O. & Mechali, M. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J. 12, 4511–4520 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herrick, J., Stanislawski, P., Hyrien, O. & Bensimon, A. Replication fork density increases during DNA synthesis in X. laevis egg extracts. J. Mol. Biol. 300, 1133–1142 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Walter, J. & Newport, J.W. Regulation of replicon size in Xenopus egg extracts. Science 275, 993–995 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Costanzo, V. et al. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol. Cell 11, 203–213 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Walter, J., Sun, L. & Newport, J. Regulated chromosomal DNA replication in the absence of a nucleus. Mol. Cell 1, 519–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Walter, J. & Newport, J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase α. Mol. Cell 5, 617–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Mimura, S., Masuda, T., Matsui, T. & Takisawa, H. Central role for cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts. Genes Cells 5, 439–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Blow, J.J., Gillespie, P.J., Francis, D. & Jackson, D.A. Replication origins in Xenopus egg extract are 5–15 kilobases apart and are activated in clusters that fire at different times. J. Cell Biol. 152, 15–25 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Costanzo, V. et al. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol. Cell 6, 649–659 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Costanzo, V., Paull, T., Gottesman, M. & Gautier, J. Mre11 assembles linear DNA fragments into DNA damage signaling complexes. PLoS Biol. 2, 600–609 (2004).

    Article  CAS  Google Scholar 

  15. Pu, L., Amoscato, A.A., Bier, M.E. & Lazo, J.S. Dual G1 and G2 phase inhibition by a novel, selective Cdc25 inhibitor 6-chloro-7-(2-morpholin-4-ylethylamino)-quinoline-5,8-dione. J. Biol. Chem. 277, 46877–46885 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Gabrielli, B., Roy, L., Gautier, J., Philippe, M. & Maller, J. A cdc2-related kinase oscillates in the cell cycle independently of cyclins G2/M and cdc2. J. Biol. Chem. 267, 1969–1975 (1992).

    CAS  PubMed  Google Scholar 

  17. Zou, L. & Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hekmat-Nejad, M., You, Z., Yee, M., Newport, J. & Cimprich, K. Xenopus ATR is a replication-dependent chromatin-binding protein required for the DNA replication checkpoint. Curr. Biol. 10, 1565–1573 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Marheineke, K. & Hyrien, O. Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts. J. Biol. Chem. 276, 17092–17100 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Brown, E.J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cha, R.S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Miao, H., Seiler, J.A. & Burhans, W.C. Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints. J. Biol. Chem. 278, 4295–4304 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, H., Watkins, J.L. & Piwnica-Worms, H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc. Natl Acad. Sci. USA 99, 14795–14800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Painter, R.B. Radioresistant DNA synthesis: an intrinsic feature of ataxia telangiectasia. Mutat. Res. 84, 183–190 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Heffernan, T.P. et al. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol. Cell. Biol. 22, 8552–8561 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Costanzo, V. et al. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol. Cell 8, 137–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Lucas, I., Chevrier-Miller, M., Sogo, J.M. & Hyrien, O. Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos. J. Mol. Biol. 296, 769–786 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Marheineke, K. & Hyrien, O. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J. Biol. Chem. (2004).

  30. Robertson, K., Hensey, C. & Gautier, J. Isolation and characterization of Xenopus ATM (X-ATM): expression, localization, and complex formation during oogenesis and early development. Oncogene 18, 7070–7079 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Smythe, C. & Newport, J.W. Systems for the study of nuclear assembly, DNA replication, and nuclear breakdown in Xenopus laevis egg extracts. Methods Cell Biol. 35, 449–468 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Murray, A.W. Cell cycle extracts. Methods Cell Biol. 36, 581–605 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Vuillard, L., Rabilloud, T. & Goldberg, M.E. Interactions of non-detergent sulfobetaines with early folding intermediates facilitate in vitro protein renaturation. Eur. J. Biochem. 256, 128–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J.H. & Paull, T.T. Direct activation of the ATM protein kinase by the Mre11/Rad 50/Nbs1 complex. Science 304, 93–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Jackson, P., Chevalier, S., Philippe, M. & Kirschner, M. Early events in DNA replication require cyclin E and are blocked by p21CIP1. J. Cell Biol. 130, 755–769 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Walter for help and advice in setting up the NPE system; G.-H. Lee and T.T. Paull for the generous gift of purified ATM protein; K. Cimprich for the ATR antibody; J. Maller for Cdc25A baculovirus; M. Michael for the Geminin construct; D. Grieco for the p21 construct; H. Takisawa for the Cdc45 antibody; P. Jackson for RPA antibody; J. Boroweic for purified hRPA protein; E. Kim for production of recombinant Cdk2–Cyclin E and Cdc25A; and C. Ying for recombinant Cdc45. We also thank members of the Gautier lab for helpful discussions and critical reading of the manuscript. This work was supported by grants from the National Institutes of Health (RO1 CA92245) and the American Cancer Society (RSG CCG-103367) to J.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Gautier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Fig. S1, Fig. S2 and Fig. S3 (PDF 967 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nat Cell Biol 6, 648–655 (2004). https://doi.org/10.1038/ncb1145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing