Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Irreversible cell-cycle transitions are due to systems-level feedback

The irreversibility of cell-cycle transitions is commonly thought to derive from the irreversible degradation of certain regulatory proteins. We argue that irreversible transitions in the cell cycle (or in any other molecular control system) cannot be attributed to a single molecule or reaction, but that they derive from feedback signals in reaction networks. This systems-level view of irreversibility is supported by many experimental observations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An irreversible mechanical switch.
Figure 2: Schematic representation of the molecular mechanisms underlying cell-cycle transitions.

References

  1. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell. Biol. 15, 221–231 (2003).

    Article  CAS  Google Scholar 

  2. Reed, S. I. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nature Rev. Mol. Cell Biol. 4, 855–864 (2003).

    Article  CAS  Google Scholar 

  3. Hershko, A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell. Biol. 9, 788–799 (1997).

    Article  CAS  Google Scholar 

  4. Michael, W. M. & Newport, J. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science 282, 1886–1889 (1998).

    Article  CAS  Google Scholar 

  5. Sia, R. A., Bardes, E. S. & Lew, D. J. Control of Swe1p degradation by the morphogenesis checkpoint. EMBO J. 17, 6678–6688 (1998).

    Article  CAS  Google Scholar 

  6. Zachariae, W. & Nasmyth, K. Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13, 2039–2058 (1999).

    Article  CAS  Google Scholar 

  7. King, R. W., Deshaies, R. J., Peters, J. M. & Kirschner, M. W. How proteolysis drives the cell cycle. Science 274, 1652–1659 (1996).

    Article  CAS  Google Scholar 

  8. Lodish, H. et al. Molecular Cell Biology 5th edn (Freeman, New York, 2004).

    Google Scholar 

  9. Vodermaier, H. C. APC/C and SCF: controlling each other and the cell cycle. Curr. Biol. 14, R787–R796 (2004).

    Article  CAS  Google Scholar 

  10. Yamasaki, L. & Pagano, M. Cell cycle, proteolysis and cancer. Curr. Opin. Cell. Biol. 16, 623–628 (2004).

    Article  CAS  Google Scholar 

  11. Nurse, P. Universal control mechanism regulating onset of M-phase. Nature 344, 503–508 (1990).

    Article  CAS  Google Scholar 

  12. Potapova, T. A. et al. The reversibility of mitotic exit in vertebrate cells. Nature 440, 954–958 (2006).

    Article  CAS  Google Scholar 

  13. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell. Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  14. Lukas, C. et al. Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401, 815–818 (1999).

    Article  CAS  Google Scholar 

  15. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998).

    Article  CAS  Google Scholar 

  16. Stegmeier, F. & Amon, A. Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu. Rev. Genet. 38, 203–232 (2004).

    Article  CAS  Google Scholar 

  17. Nasmyth, K. At the heart of the budding yeast cell cycle. Trends Genet. 12, 405–412 (1996).

    Article  CAS  Google Scholar 

  18. Novak, B., Csikasz-Nagy, A., Gyorffy, B., Nasmyth, K. & Tyson, J. J. Model scenarios for evolution of the eukaryotic cell cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 2063–2076 (1998).

    Article  CAS  Google Scholar 

  19. Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74, 993–1007 (1993).

    Article  CAS  Google Scholar 

  20. Cross, F. R., Archambault, V., Miller, M. & Klovstad, M. Testing a mathematical model of the yeast cell cycle. Mol. Biol. Cell 13, 52–70 (2002).

    Article  CAS  Google Scholar 

  21. Hayles, J., Fisher, D., Woollard, A. & Nurse, P. Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2–mitotic B cyclin complex. Cell 78, 813–822 (1994).

    Article  CAS  Google Scholar 

  22. Schwab, M., Lutum, A. S. & Seufert, W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90, 683–693 (1997).

    Article  CAS  Google Scholar 

  23. Dunphy, W. G. The decision to enter mitosis. Trends Cell Biol. 4, 202–207 (1994).

    Article  CAS  Google Scholar 

  24. Novak, B. & Tyson, J. J. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153–1168 (1993).

    CAS  PubMed  Google Scholar 

  25. Solomon, M. J., Glotzer, M., Lee, T. H., Philippe, M. & Kirschner, M. W. Cyclin activation of p34cdc2. Cell 63, 1013–1024 (1990).

    Article  CAS  Google Scholar 

  26. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E., Jr. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol. 5, 346–351 (2003).

    Article  CAS  Google Scholar 

  27. Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl Acad. Sci. USA 100, 975–980 (2003).

    Article  CAS  Google Scholar 

  28. Pomerening, J. R., Kim, S. Y. & Ferrell, J. E., Jr. Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122, 565–578 (2005).

    Article  CAS  Google Scholar 

  29. Sveiczer, A., Novak, B. & Mitchison, J. M. Mitotic control in the absence of cdc25 mitotic inducer in fission yeast. J. Cell Sci. 112, 1085–1092 (1999).

    CAS  PubMed  Google Scholar 

  30. Novak, B. & Tyson, J. J. A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230, 563–579 (2004).

    Article  CAS  Google Scholar 

  31. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to G. J. Gorbsky for discussion. Work done in the authors' laboratory is supported by the James S. McDonnell Foundation (21002050), the European Commission (YSBN: LSHG-CT-2005-018942) and OTKA (F-60414). A.C.N. is a Bolyai fellow of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, B., Tyson, J., Gyorffy, B. et al. Irreversible cell-cycle transitions are due to systems-level feedback. Nat Cell Biol 9, 724–728 (2007). https://doi.org/10.1038/ncb0707-724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0707-724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing