Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Sustainable cutaneous gene delivery

Abstract

Durable gene delivery to human skin is necessary for lasting correction of human genetic skin disease. Current cutaneous gene-delivery strategies, however, have achieved only transient gene expression, often only within a small percentage of tissue cells. The recent inability to sustain phenotypic correction of human genetic skin disease due to loss of therapeutic gene expression in regenerated epidermal tissue has highlighted this current limitation. In an effort to surmount this problem, we have generated gene delivery vectors that produce more durable gene delivery in human skin tissue in vivo

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cheng, J., Syder, A.J., Yu, Q.C., Letai, A., Paller, A.S. and Fuchs, E. 1992. The genetic basis of epidermolytic hyperkeratosis: a disorder of differentiation-specific epidermal keratin genes. Cell 70: 811–819.

    Article  CAS  PubMed  Google Scholar 

  2. Coulombe, P.A., Hutton, M.E., Vassar, R. and Fuchs, E. 1991. A function for keratins and a common thread among different types of epidermolysis bullosa simplex diseases. J. Cell Biol. 115: 1661–1674.

    Article  CAS  PubMed  Google Scholar 

  3. Uitto, J. and Pulkkinen, L. 1996. Molecular complexity of the cutaneous basement membrane zone. Mol. Biol. Rep. 23: 35–46.

    Article  CAS  PubMed  Google Scholar 

  4. Rothnagel, J.A., Dominey, A.M., Dempsey, L.D., Longley, M.A., Greenhalgh, D.A., Gagne, T.A. et al. 1992. Mutations in the rod domains of keratins 1 and 10 in epi-dermolytic hyperkeratosis. Science 257: 1128–1130.

    Article  CAS  PubMed  Google Scholar 

  5. Huber, M., Rettler, I., Bernasconi, K., Frenk, E., Lavrijsen, S.R., Ponec, M. et al. 1995. Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267: 525–528.

    Article  CAS  PubMed  Google Scholar 

  6. Russell, L.J., DiGiovanna, J.J., Rogers, G.R., Steinert, P.M., Hashem, N., Compton, J.G. and Bale, S.J. 1995. Mutations in the gene for transglutaminase 1 in autosomal recessive lamellar ichthyosis. Nature Genet. 9: 279–283.

    Article  CAS  PubMed  Google Scholar 

  7. Choate, K.A., Medalie, D.A., Morgan, J.R. and Khavari, P.A. 1996. Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nature Med. 2: 1263–1267.

    Article  CAS  PubMed  Google Scholar 

  8. Freiberg, R.A., Choate, K.A., Deng, H., Alperin, E.S., Shapiro, L.J. and Khavari, P.A. 1997. A model of corrective gene transfer in X-linked ichthyosis. Hum. Mol. Genet. 6: 937–933.

    Article  Google Scholar 

  9. Lu, B., Federoff, H.J., Wang, Y., Goldsmith, L.A. and Scott, G. 1997. Topical application of viral vectors for epidermal gene transfer. J. Invest. Dermatol. 108: 803–808.

    Article  CAS  PubMed  Google Scholar 

  10. Fenjves, E.S., Yao, S.N., Kurachi, K. and Taichman, L.B. 1996. Loss of expression of a retrovirus-transduced gene in human keratinocytes. J. Invest. Dermatol. 106: 576–578.

    Article  CAS  PubMed  Google Scholar 

  11. Gerrard, A.J., Hudson, D.L., Brownlee, G.G. and Watt, F.M. 1993. Towards gene therapy for haemophilia B using primary human keratinocytes. Nature Genet. 3: 180–183.

    Article  CAS  PubMed  Google Scholar 

  12. Setoguchi, Y., Jaffe, H.A., Danel, C. and Crystal, R.G. 1994. Ex vivo and in vivo gene transfer to the skin using replication-deficient recombinant adenovirus vectors. J. Invest Dermatol. 102: 415–421.

    Article  CAS  PubMed  Google Scholar 

  13. Choate, K.A. and Khavari, R.A. 1997. Sustainability of keratinocyte gene transfer and cell survival in vivo. Hum. Gene Ther. 8: 895–901.

    Article  CAS  PubMed  Google Scholar 

  14. Hoeben, R.C., Migchielsen, A.A., van der Jagt, R.C., van Ormondt, H., and van der Eb, A.J. 1991. Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast cell lines is associated with methylation and dependent on its chromosomal position. J. Virol. 65: 904–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Challita, P.M. and Kohn, D.B. 1994. Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc. Natl. Acad. Sci. USA 91: 2567–2571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wolffe, A.P. 1992. New insights into chromatin function in transcriptional control. FASEB J. 6: 3354–3361.

    Article  CAS  PubMed  Google Scholar 

  17. Chakraborty, A.K., Zink, M.A., Boman, B.M. and Hodgson, C.R. 1993. Synthetic retrotransposon vectors for gene therapy. FASEB J. 7: 971–977.

    Article  CAS  PubMed  Google Scholar 

  18. Choate, K.A., Kinsella, T.M., Williams, M.L., Nolan, G.R. and Khavari, P.A. 1996. Transglutaminase 1 delivery to lamellar ichthyosis keratinocytes. Hum. Gene Ther. 7: 2247–2253.

    Article  CAS  PubMed  Google Scholar 

  19. Faustinella, F., Kwon, H., Serrano, F., Belmont, J.W., Caskey, C.T. and Aguilar-Cordova, E. 1994. A new family of murine retroviral vectors with extended multiple cloning sites for gene insertion. Hum. Gene Ther. 5: 307–312.

    Article  CAS  PubMed  Google Scholar 

  20. Hantzopoulos, R.A., Sullenger, B.A., Ungers, G. and Gilboa, E. 1989. Improved gene expression upon transfer of the adenosine deaminase minigene outside the transcriptional unit of a retroviral vector. Proc. Natl. Acad. Sci. USA 86: 3519–3523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller, A.D., Jolly, D.J., Friedmann, T. and Verma, I.M. 1983. A transmissible retro-virus expressing human hypoxanthine phospho-ribosyltransferase (HPRT): gene transfer into cells obtained from humans deficient in HPRT. Proc. Natl. Acad. Sci. USA 83: 4709.

    Article  Google Scholar 

  22. Wolffe, A.P. 1994. Gene regulation. Insulating chromatin. Curr. Biol. 4: 85–87.

    Article  CAS  PubMed  Google Scholar 

  23. Kalos, M., Fournier, R.E., Pearce, D. and Yamamoto, K.R. 1995. Position-independent transgene expression mediated by boundary elements from the apolipoprotein B chromatin domain Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. Mol. Cell Biol. 15: 198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Medalie, D.A., Eming, S.A., Tompkins, R.G., Yarmush, M.L., Krueger, G.G. and Morgan, J.R. 1996. Evaluation of human skin reconstituted from composite grafts of cultured keratinocytes and human acellular dermis transplanted to athymic mice. J. Invest. Dermatol. 107: 121–127.

    Article  CAS  PubMed  Google Scholar 

  25. Murphy, G.F., Flynn, T.C., Rice, R.H. and Pinkus, G.S. 1984. Involucrin expression in normal and neoplastic human skin: a marker for keratinocyte differentiation. J. Invest. Dermatol. 82: 453–457.

    Article  CAS  PubMed  Google Scholar 

  26. Fairley, J.A., Heintz, P.W., Neuburg, M., Diaz, L.A. and Giudice, G.J. 1995. Expression pattern of the bullous pemphigoid-180 antigen in normal and neoplastic epithelia. Br. J. Dermatol. 133: 385–91.

    Article  CAS  PubMed  Google Scholar 

  27. Orkin, S.H. and Motulsky, A.G. 1995. Report and recommendations of the panel to assess the NIH investment in research on gene therapy. http: //www.nih.gov/news/panelrep.html.

  28. Taichman, L.B. 1994. Epithelial gene therapy, pp. 543 in The keratinocyte handbook. Leigh, I., Lane, B., and Watt, F. (eds.). Cambridge University Press, Cambridge, UK.

    Google Scholar 

  29. Khavari, P.A. and Krueger, G.G. 1997. Cutaneous gene therapy. Dermatol. Clin. 15: 27–35.

    Article  CAS  PubMed  Google Scholar 

  30. Palmer, T.D., Rosman, G.J., Osborne, W.R. and Miller, A.D. 1991. Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc. Natl. Acad. Sci. USA 88: 1330–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kinsella, T.M. and Nolan, G.R. 1996. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7: 1405–1413.

    Article  CAS  PubMed  Google Scholar 

  32. Krall, W.J., Skelton, D.C., Yu, X.J., Riviere, I., Lehn, P., Mulligan, R.C. and Kohn, D.B. 1996. Increased levels of spliced RNA account for augmented expression from the MFG retroviral vector in hematopoietic cells. Gene Ther. 3: 37–48.

    CAS  PubMed  Google Scholar 

  33. Rheinwald, J.G. and Green, H. 1975. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6: 331–343.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, H., Lin, Q. & Khavari, P. Sustainable cutaneous gene delivery. Nat Biotechnol 15, 1388–1391 (1997). https://doi.org/10.1038/nbt1297-1388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1297-1388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing