Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Targeted gene delivery by tropism-modified adenoviral vectors

Abstract

The utility of adenoviral vectors for gene therapy is currently limited due, in part, to the widespread distribution of the cellular receptor for the adenovirus fiber that precludes the targeting of specific cell types. In order to develop a targeted adenovirus, it is therefore necessary both to ablate endogenous viral tropism and to introduce novel tropism. We hypothesized that these two goals could be achieved by employing a neutralizing anti-fiber antibody, or antibody fragment, chemically conjugated to a cell-specific ligand. To test this concept, we chose to target the folate receptor, which is overexpressed on the surface of a variety of malignant cells. Therefore, we conjugated folate to the neutralizing Fab fragment of an anti-fiber monoclonal antibody. This Fab-folate conjugate was complexed with an adenoviral vector carrying the luciferase reporter gene and was shown to redirect adenoviral infection of target cells via the folate receptor at a high efficiency. Furthermore, when complexed with an adenoviral vector carrying the gene for herpes simplex virus thymidine kinase, the Fab-folate conjugate mediated the specific killing of cells that overexpress the folate receptor. This work thus represents the first demonstration of the retargeting of a recombinant adenoviral vector via a non-adenoviral cellular receptor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jolly, D. 1994. Viral vector systems for gene therapy. Cancer Gene Therapy 1: 51–64.

    CAS  PubMed  Google Scholar 

  2. Trapnell, B. and Gorziglia, M. 1994. Gene therapy using adenoviral vectors. Curr. Opin. Biotech. 5: 617–625.

    Article  CAS  PubMed  Google Scholar 

  3. Stratford-Perricaudet, L., Makeh, I., Perricaudet, M. and Briand, P. 1992. Widespread long-term gene transfer to mouse skeletal muscles and heart. J. Clin. Invest. 90: 626–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huard, J. et al. 1995. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Therapy 2: 107–115.

    CAS  PubMed  Google Scholar 

  5. Herz, J. and Gerard, R. 1993. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc. Natl. Acad. Sci. USA 90: 2812–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henry, L., Xia, D., Wilke, M., Deisenhofer, J. and Gerard, R. 1994. characterization of the knob domain of the adenovirus type 5 fiber protein expressed in E. coli . J. Virol. 68: 5239–5246.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Louis, N., Fender, P., Barge, A., Kitts, P. and Chroboczek, J. 1994. Cell-binding domain of adenovirus serotype 2 fiber. J. Virol. 68: 4104–4106.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Coney, L.R. et al. 1991. Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res. 51: 6125–6132.

    CAS  PubMed  Google Scholar 

  9. Weitman, S. et al. 1992. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 52: 3396–3401.

    CAS  PubMed  Google Scholar 

  10. Ross, J.F., Chaudhuri, P.K. and Ratnam, M. 1994. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73: 2432–2443.

    Article  CAS  PubMed  Google Scholar 

  11. Weitman, S.D., Frazier, K.M. and Kamen, B.A. 1994. The folate receptor in central nervous system malignancies of childhood. J. Neuro Onc. 21: 107–112.

    Article  CAS  Google Scholar 

  12. Leamon, C.P. and Low, P.S. 1992. Cytotoxicity of momordin-folate conjugates in cultured human cells. J. Biol. Chem. 267: 24966–24971.

    CAS  PubMed  Google Scholar 

  13. Gottschalk, S., Cristiano, R., Smith, L. and Woo, S. 1994. Folate receptor mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression. Gene Therapy 1: 185–191.

    CAS  PubMed  Google Scholar 

  14. Kranz, D., Patrick, T., Brigle, K., Spinella, M. and Roy, E. 1995. Conjugates of folate and anti-T-cell-receptor antibodies specifically target folate-receptor-positive tumor cells for lysis. Proc. Natl. Acad. Sci. USA 92: 9057–9061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, R.J. and Low, P.S. 1995. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim. Biophys. Acta 1233: 134–144.

    Article  PubMed  Google Scholar 

  16. Anderson, R., Kamen, B., Rothberg, K. and Lacey, S. 1992. Potocytosis: sequestration and transport of small molecules by caveolae. Science 255: 410–411.

    Article  CAS  PubMed  Google Scholar 

  17. FitzGerald, D., Padmanabhan, R., Pastan, I. and Willingham, M. 1983. Adenovirus-induced release of epidermal growth factor and Pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell 32: 607–617.

    Article  CAS  PubMed  Google Scholar 

  18. Varga, M., Weibull, C. and Everitt, E. 1991. Infectious entry pathway of adenovirus type 2. J. Virol. 65: 6061–6070.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Greber, U., Willetts, M., Webster, P. and Helenius, A. 1993. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75: 477–486.

    Article  CAS  PubMed  Google Scholar 

  20. Bai, M., Harfe, B. and Freimuth, P. 1993. Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J. Virol. 67: 5198–5205.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wickham, T., Mathias, P., Cheresh, D. and Nemerow, G. 1993. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  22. Elwood, P. 1989. Molecular cloning and characterization of the human folate-binding protein cDNA from placenta and malignant tisssue culture (KB) cells. J. Biol. Chem. 264: 14893–14901.

    CAS  PubMed  Google Scholar 

  23. Kim, M. et al. 1996. Adenoviral vector mediated delivery of the herpes simplex virus thymidine kinase gene sensitizes EBV-transformed B cell lines to ganciclovir. Tumor Targeting. In press.

    Google Scholar 

  24. Moolten, F. 1986. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: Paradigm for a prospective cancer control strategy. Cancer Res. 46: 5276–5281.

    CAS  PubMed  Google Scholar 

  25. Rosenfeld, M. et al. 1995. Adenoviral-mediated delivery of the herpes simplex virus thymidine kinase gene selectively sensitizes human ovarian carcinoma cells to ganciclovir. Clinical Cancer Res. 1: 1571–1580.

    CAS  Google Scholar 

  26. Krasnykh, V., Mikheeva, G., Douglas, J. and Curiel, D. 1996. Generation of tropism-modified adenoviral vectors with modified fibers for altering viral tropism. J. Virol. 70: 6839–6846.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Roux, P., Jeanteur, P. and Piechaczyk, M. 1989. A versatile and potentially general approach to the targeting of specific cell types by retro-viruses: Application to the infection of human cells by means of major histocompatibilty complex class I and class II antigens by mouse ecotropic murine leukemia virus-derived viruses. Proc. Natl. Acad. Sci. USA 86: 9079–9083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Russell, S., Hawkins, R. and Winter, G. 1993. Retroviral vectors displaying functional antibody fragments. Nucleic Acids Res. 21: 1081–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kasahara, N., Dozy, A. and Kan, Y. 1994. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266: 1373–1376.

    Article  CAS  PubMed  Google Scholar 

  30. Cosset, F.-L. et al. 1995. Retroviral retargeting by envelopes expressing an N-terminal binding domain. J. Virol. 69: 6314–6322.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Michael, S. et al. 1993. Binding-incompetent adenovirus facilitates molecular conjugate-mediated gene transfer by the receptor-mediated endocytosis pathway. J. Biol. Chem. 268: 6866–6869.

    CAS  PubMed  Google Scholar 

  32. Takeuchi, Y., Cosset, F.-L., Lachmann, P., Weiss, R. and Collins, M. 1994. Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J. Virol. 68: 8001–8007.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Douglas, J.T. and Curiel, D.T. 1995. Targeted gene therapy. Tumor Targeting 1: 67–84.

    CAS  Google Scholar 

  34. Graham, F., Smiley, J., Russell, W. and Nairn, R. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36: 59–72.

    Article  CAS  PubMed  Google Scholar 

  35. Graham, F. and Prevec, L. 1991. Manipulation of adenovirus vectors, pp. 109–128 in Methods in molecular biology Vol. 7, Gene transfer and expression techniques. Murray, E.J. and Walker, J.M. (eds.). Humana Press, Clifton.

    Google Scholar 

  36. Harlow, E. and Lane, D. 1988. Antibodies. A laboratory manual, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, J., Rogers, B., Rosenfeld, M. et al. Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol 14, 1574–1578 (1996). https://doi.org/10.1038/nbt1196-1574

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1196-1574

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing