Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Specification of motoneurons from human embryonic stem cells

Abstract

An understanding of how mammalian stem cells produce specific neuronal subtypes remains elusive. Here we show that human embryonic stem cells generated early neuroectodermal cells, which organized into rosettes and expressed Pax6 but not Sox1, and then late neuroectodermal cells, which formed neural tube–like structures and expressed both Pax6 and Sox1. Only the early, but not the late, neuroectodermal cells were efficiently posteriorized by retinoic acid and, in the presence of sonic hedgehog, differentiated into spinal motoneurons. The in vitro–generated motoneurons expressed HB9, HoxC8, choline acetyltransferase and vesicular acetylcholine transporter, induced clustering of acetylcholine receptors in myotubes, and were electrophysiologically active. These findings indicate that retinoic acid action is required during neuroectoderm induction for motoneuron specification and suggest that stem cells have restricted capacity to generate region-specific projection neurons even at an early developmental stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: hES cell–derived neuroectodermal cells display rostral phenotypes.
Figure 2: Generation of motoneurons from neuroectodermal cells.
Figure 3: Effect of RA, FGF2 and SHH on neuroectodermal cells.
Figure 4: Maturation and functional properties of in vitro–generated motoneurons.

Similar content being viewed by others

References

  1. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Briscoe, J. & Ericson, J. Specification of neuronal fates in the ventral neural tube. Curr. Opin. Neurobiol. 11, 43–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Bally-Cuif, L. & Hammerschmidt, M. Induction and patterning of neuronal development, and its connection to cell cycle control. Curr. Opin. Neurobiol. 13, 16–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Vasiliauskas, D. & Stern, C.D. Patterning the embryonic axis: FGF signaling and how vertebrate embryos measure time. Cell 106, 133–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Ying, Q.L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M. & McKay, R.D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Barberi, T. et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200–1207 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, S.C., Wernig, M., Duncan, I.D., Brustle, O. & Thomson, J.A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Pevny, L.H., Sockanathan, S., Placzek, M. & Lovell-Badge, R. A role for SOX1 in neural determination. Development 125, 1967–1978 (1998).

    CAS  PubMed  Google Scholar 

  16. Stern, C.D. Initial patterning of the central nervous system: how many organizers? Nat. Rev. Neurosci. 2, 92–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Lu, Q.R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Q., Choi, G. & Anderson, D.J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Shirasaki, R. & Pfaff, S.L. Transcriptional codes and the control of neuronal identity. Annu. Rev. Neurosci. 25, 251–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, J.P., Laufer, E. & Jessell, T.M. Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 32, 997–1012 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Gao, B.X., Cheng, G. & Ziskind-Conhaim, L. Development of spontaneous synaptic transmission in the rat spinal cord. J. Neurophysiol. 79, 2277–2287 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Miles, G.B. et al. Functional properties of motoneurons derived from mouse embryonic stem cells. J. Neurosci. 24, 7848–7858 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Gabay, L., Lowell, S., Rubin, L.L. & Anderson, D.J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, S.C. Embryonic stem cells for neural replacement therapy: prospects and challenges. J. Hematother. Stem Cell Res. 12, 625–634 (2003).

    Article  PubMed  Google Scholar 

  28. Ginis, I. et al. Differences between human and mouse embryonic stem cells. Dev. Biol. 269, 360–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Du, Z.W. & Zhang, S.C. Neural differentiation from embryonic stem cells: which way? Stem Cells Dev. 13, 372–381 (2004).

    Article  PubMed  Google Scholar 

  30. Kudoh, T., Wilson, S.W. & Dawid, I.B. Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129, 4335–4346 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Amyotrophic Lateral Sclerosis Association, Hope for ALS, National Institutes of Health (National Institute of Neurological Disorders and Stroke, R01-NS045926), and partly by a core grant to the Waisman Center from the National Institute of Child Health and Human Development (P30 HD03352). We thank M. Nakafuku, S. Pfaff and F. Vaccarino for generously providing antibodies against Olig2, Islet1/2 and Otx2, E. Terasawa for providing the embryonic monkey tissues and C.N. Svendsen and A. Bhattacharyya for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Chun Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression of Pax6 and Sox1 mRNA by neuroectodermal cells. (PDF 44 kb)

Supplementary Fig. 2

Expression of Pax7 by neuroectodermal cells. (PDF 52 kb)

Supplementary Fig. 3

Expression of ChAT protein by motoneurons. (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XJ., Du, ZW., Zarnowska, E. et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23, 215–221 (2005). https://doi.org/10.1038/nbt1063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing