Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis

Abstract

Most cells have the inherent capacity to shift their reliance on glycolysis relative to oxidative metabolism, and studies in model systems have shown that targeting such shifts may be useful in treating or preventing a variety of diseases ranging from cancer to ischemic injury. However, we currently have a limited number of mechanistically distinct classes of drugs that alter the relative activities of these two pathways. We screen for such compounds by scoring the ability of >3,500 small molecules to selectively impair growth and viability of human fibroblasts in media containing either galactose or glucose as the sole sugar source. We identify several clinically used drugs never linked to energy metabolism, including the antiemetic meclizine, which attenuates mitochondrial respiration through a mechanism distinct from that of canonical inhibitors. We further show that meclizine pretreatment confers cardioprotection and neuroprotection against ischemia-reperfusion injury in murine models. Nutrient-sensitized screening may provide a useful framework for understanding gene function and drug action within the context of energy metabolism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic plasticity of human fibroblasts.
Figure 2: A nutrient-sensitized screen to discover agents that shift energy metabolism.
Figure 3: Effects of meclizine on cellular energy metabolism.
Figure 4: Effect of meclizine on bioenergetics of isolated mitochondria.
Figure 5: Meclizine is cardioprotective in cellular and ex vivo models of cardiac ischemia.
Figure 6: Meclizine is neuroprotective in a mouse model of stroke.

Similar content being viewed by others

References

  1. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  Google Scholar 

  2. Bonnet, S. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007).

    Article  CAS  Google Scholar 

  3. Huber, R., Spiegel, T., Buchner, M. & Riepe, M.W. Graded reoxygenation with chemical inhibition of oxidative phosphorylation improves posthypoxic recovery in murine hippocampal slices. J. Neurosci. Res. 75, 441–449 (2004).

    Article  CAS  Google Scholar 

  4. Burwell, L.S., Nadtochiy, S.M. & Brookes, P.S. Cardioprotection by metabolic shut-down and gradual wake-up. J. Mol. Cell. Cardiol. 46, 804–810 (2009).

    Article  CAS  Google Scholar 

  5. Chen, Q., Camara, A.K., Stowe, D.F., Hoppel, C.L. & Lesnefsky, E.J. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am. J. Physiol. Cell Physiol. 292, C137–C147 (2007).

    Article  CAS  Google Scholar 

  6. Riepe, M.W. et al. Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: “chemical preconditioning”. J. Cereb. Blood Flow Metab. 17, 257–264 (1997).

    Article  CAS  Google Scholar 

  7. Piantadosi, C.A. & Zhang, J. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke 27, 327–331 (1996).

    Article  CAS  Google Scholar 

  8. Kaelin, W.G. Jr. & Ratcliffe, P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  Google Scholar 

  9. Kim, J.W., Tchernyshyov, I., Semenza, G.L. & Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    Article  Google Scholar 

  10. Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122 (2007).

    Article  CAS  Google Scholar 

  11. Semenza, G.L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene published online, doi:10.1038/onc.2009.441 (30 November 2009).

    Article  CAS  Google Scholar 

  12. Fraisl, P., Aragones, J. & Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat. Rev. Drug Discov. 8, 139–152 (2009).

    Article  CAS  Google Scholar 

  13. Hoesch, R.E. & Geocadin, R.G. Therapeutic hypothermia for global and focal ischemic brain injury–a cool way to improve neurologic outcomes. Neurologist 13, 331–342 (2007).

    Article  Google Scholar 

  14. Reitzer, L.J., Wice, B.M. & Kennell, D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669–2676 (1979).

    CAS  PubMed  Google Scholar 

  15. Robinson, B.H., Petrova-Benedict, R., Buncic, J.R. & Wallace, D.C. Nonviability of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. Biochem. Med. Metab. Biol. 48, 122–126 (1992).

    Article  CAS  Google Scholar 

  16. Marroquin, L.D., Hynes, J., Dykens, J.A., Jamieson, J.D. & Will, Y. Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol. Sci. 97, 539–547 (2007).

    Article  CAS  Google Scholar 

  17. DeBerardinis, R.J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. USA 104, 19345–19350 (2007).

    Article  CAS  Google Scholar 

  18. Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, C125–C136 (2007).

    Article  CAS  Google Scholar 

  19. Wagner, B.K. et al. Large-scale chemical dissection of mitochondrial function. Nat. Biotechnol. 26, 343–351 (2008).

    Article  CAS  Google Scholar 

  20. Golenser, J., Waknine, J.H., Krugliak, M., Hunt, N.H. & Grau, G.E. Current perspectives on the mechanism of action of artemisinins. Int. J. Parasitol. 36, 1427–1441 (2006).

    Article  CAS  Google Scholar 

  21. The Food and Drug Administration Antiemetic drug products for over-the-counter human use; final monograph. Fed. Regist. 52, 15866–15893 (1987).

  22. Brunton, L.L., Lazo, J.S. & Parker, K.L. . Goodman & Gilman's The Pharmacological Basis of Therapeutics, edn. 11 (The McGraw-Hill Companies, 2006).

  23. Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L. & Denko, N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187–197 (2006).

    Article  CAS  Google Scholar 

  24. Gidday, J.M. Cerebral preconditioning and ischaemic tolerance. Nat. Rev. Neurosci. 7, 437–448 (2006).

    Article  CAS  Google Scholar 

  25. Sugino, T., Nozaki, K., Takagi, Y. & Hashimoto, N. 3-Nitropropionic acid induces ischemic tolerance in gerbil hippocampus in vivo. Neurosci. Lett. 259, 9–12 (1999).

    Article  CAS  Google Scholar 

  26. Ratan, R.R. et al. Translation of ischemic preconditioning to the patient: prolyl hydroxylase inhibition and hypoxia inducible factor-1 as novel targets for stroke therapy. Stroke 35, 2687–2689 (2004).

    Article  Google Scholar 

  27. Lesnefsky, E.J. et al. Blockade of electron transport during ischemia protects cardiac mitochondria. J. Biol. Chem. 279, 47961–47967 (2004).

    Article  CAS  Google Scholar 

  28. Jeong, D.W., Kim, T.S., Cho, I.T. & Kim, I.Y. Modification of glycolysis affects cell sensitivity to apoptosis induced by oxidative stress and mediated by mitochondria. Biochem. Biophys. Res. Commun. 313, 984–991 (2004).

    Article  CAS  Google Scholar 

  29. Hunter, A.J., Hendrikse, A.S. & Renan, M.J. Can radiation-induced apoptosis be modulated by inhibitors of energy metabolism? Int. J. Radiat. Biol. 83, 105–114 (2007).

    Article  CAS  Google Scholar 

  30. Vaughn, A.E. & Deshmukh, M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat. Cell Biol. 10, 1477–1483 (2008).

    Article  CAS  Google Scholar 

  31. Ramirez, J.M., Folkow, L.P. & Blix, A.S. Hypoxia tolerance in mammals and birds: from the wilderness to the clinic. Annu. Rev. Physiol. 69, 113–143 (2007).

    Article  CAS  Google Scholar 

  32. Lu, C.W., Lin, S.C., Chen, K.F., Lai, Y.Y. & Tsai, S.J. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J. Biol. Chem. 283, 28106–28114 (2008).

    Article  CAS  Google Scholar 

  33. Aragones, J. et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180 (2008).

    Article  CAS  Google Scholar 

  34. Philipp, S. et al. Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats. Eur. J. Heart Fail. 8, 347–354 (2006).

    Article  CAS  Google Scholar 

  35. Siddiq, A. et al. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J. Biol. Chem. 280, 41732–41743 (2005).

    Article  CAS  Google Scholar 

  36. Bernhardt, W.M. et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J. Am. Soc. Nephrol. 17, 1970–1978 (2006).

    Article  CAS  Google Scholar 

  37. Brahimi-Horn, M.C. & Pouyssegur, J. Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem. Pharmacol. 73, 450–457 (2007).

    Article  CAS  Google Scholar 

  38. Dirnagl, U., Becker, K. & Meisel, A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 8, 398–412 (2009).

    Article  CAS  Google Scholar 

  39. Giurgea, M. & Puigdevall, J. Experimental teratology with Meclozine. Med. Pharmacol. 15, 375–388 (1966).

    Article  CAS  Google Scholar 

  40. Lione, A. & Scialli, A.R. The developmental toxicity of the H1 histamine antagonists. Reprod. Toxicol. 10, 247–255 (1996).

    Article  CAS  Google Scholar 

  41. Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  Google Scholar 

  42. Mootha, V.K., Arai, A.E. & Balaban, R.S. Maximum oxidative phosphorylation capacity of the mammalian heart. Am. J. Physiol. 272, H769–H775 (1997).

    CAS  PubMed  Google Scholar 

  43. Wojtovich, A.P. & Brookes, P.S. The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondrial KATP channels. Basic Res. Cardiol. 104, 121–129 (2009).

    Article  CAS  Google Scholar 

  44. Wojtovich, A.P. & Brookes, P.S. The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. Biochim. Biophys. Acta 1777, 882–889 (2008).

    Article  CAS  Google Scholar 

  45. Nadtochiy, S.M., Tompkins, A.J. & Brookes, P.S. Different mechanisms of mitochondrial proton leak in ischaemia/reperfusion injury and preconditioning: implications for pathology and cardioprotection. Biochem. J. 395, 611–618 (2006).

    Article  CAS  Google Scholar 

  46. Miyazaki, S., Imaizumi, M. & Onodera, K. Effects of thioperamide, a histamine H3-receptor antagonist, on a scopolamine-induced learning deficit using an elevated plus-maze test in mice. Life Sci. 57, 2137–2144 (1995).

    Article  CAS  Google Scholar 

  47. Toyota, H. et al. Behavioral characterization of mice lacking histamine H(3) receptors. Mol. Pharmacol. 62, 389–397 (2002).

    Article  CAS  Google Scholar 

  48. Baughman, J.M. et al. A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis. PLoS Genet. 5, e1000590 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Shoubridge for the MCH58 cell line; M. MacDonald for immortalized striatal cells; R. Xavier for the HRE luciferase construct; S. Norton, B. Wagner and the Broad Chemical Screening Platform for assistance in compound arraying; J. Evans of the Whitehead Institute/MIT BioImaging Center for assistance with high-throughput microscopy; C. Belcher-Timme for technical assistance; T. Kitami for assistance with mitochondrial imaging; M. Mehta for assistance reviewing drug toxicity data; S. Calvo, A. Chess, R. Gould, E. Lander, A. Ting, S. Vafai and members of Mootha lab for valuable discussions and comments. This work was supported by fellowships or grants from the United Mitochondrial Disease Foundation (V.M.G.); Howard Hughes Medical Institute (S.A.S. and V.K.M.); National Institutes of Health (RO1 HL-071158 to P.S.B.); Deane Institute for Integrative Research in Stroke and Atrial Fibrillation (C.A.); American Heart Association (#0815770D to A.P.W.); the Burroughs Wellcome Fund (V.K.M.); the Center for Integration of Medical and Innovative Technology (V.K.M.); and the American Diabetes Association/Smith Family Foundation (V.K.M.).

Author information

Authors and Affiliations

Authors

Contributions

V.M.G. and V.K.M. conceived the project; V.M.G., S.A.S., J.H.L., W.C., F.P., C.B.C. and A.P.W. performed experiments; V.M.G., S.A.S., J.H.L., R.N., F.P., C.A., P.S.B. and V.K.M. performed statistical and data analysis; V.M.G., S.A.S. and V.K.M. wrote the paper.

Corresponding author

Correspondence to Vamsi K Mootha.

Ethics declarations

Competing interests

V.K.M., V.M.G. and S.A.S. are listed as inventors on a patent application filed by the Massachusetts General Hospital.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–9 and Supplementary Tables 2–4 (PDF 5024 kb)

Supplementary Table 1

Sglu/gal score of all compounds tested (XLS 280 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gohil, V., Sheth, S., Nilsson, R. et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol 28, 249–255 (2010). https://doi.org/10.1038/nbt.1606

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1606

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research