Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diversity-based, model-guided construction of synthetic gene networks with predicted functions

Abstract

Engineering artificial gene networks from modular components is a major goal of synthetic biology. However, the construction of gene networks with predictable functions remains hampered by a lack of suitable components and the fact that assembled networks often require extensive, iterative retrofitting to work as intended. Here we present an approach that couples libraries of diversified components (synthesized with randomized nonessential sequence) with in silico modeling to guide predictable gene network construction without the need for post hoc tweaking. We demonstrate our approach in Saccharomyces cerevisiae by synthesizing regulatory promoter libraries and using them to construct feed-forward loop networks with different predicted input-output characteristics. We then expand our method to produce a synthetic gene network acting as a predictable timer, modifiable by component choice. We use this network to control the timing of yeast sedimentation, illustrating how the plug-and-play nature of our design can be readily applied to biotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulatory promoter library synthesis, screening and characterization.
Figure 2: Modeling and synthesis of feed-forward loop networks using a promoter library.
Figure 3: Predictable genetic timer networks constructed from two promoter libraries.
Figure 4: Controlling the timing of yeast sedimentation using a predictable gene network.

Similar content being viewed by others

References

  1. Andrianantoandro, E., Basu, S., Karig, D.K. & Weiss, R. Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2, 2006–0028 (2006).

    Article  Google Scholar 

  2. Withers, S.T. & Keasling, J.D. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biotechnol. 73, 980–990 (2007).

    Article  CAS  Google Scholar 

  3. Weber, W. et al. A synthetic mammalian gene circuit reveals antituberculosis compounds. Proc. Natl. Acad. Sci. USA 105, 9994–9998 (2008).

    Article  CAS  Google Scholar 

  4. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Article  CAS  Google Scholar 

  5. Lu, T.K. & Collins, J.J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104, 11197–11202 (2007).

    Article  CAS  Google Scholar 

  6. Lu, T.K. & Collins, J.J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA 106, 4629–4634 (2009).

    Article  CAS  Google Scholar 

  7. Lee, S.K., Chou, H., Ham, T.S., Lee, T.S. & Keasling, J.D. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19, 556–563 (2008).

    Article  CAS  Google Scholar 

  8. Guido, N.J. et al. A bottom-up approach to gene regulation. Nature 439, 856–860 (2006).

    Article  CAS  Google Scholar 

  9. Hasty, J., McMillen, D. & Collins, J.J. Engineered gene circuits. Nature 420, 224–230 (2002).

    Article  CAS  Google Scholar 

  10. Guet, C.C., Elowitz, M.B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002).

    Article  CAS  Google Scholar 

  11. Levskaya, A. et al. Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441–442 (2005).

    Article  CAS  Google Scholar 

  12. Deans, T.L., Cantor, C.R. & Collins, J.J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 130, 363–372 (2007).

    Article  CAS  Google Scholar 

  13. Kramer, B.P. et al. An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol. 22, 867–870 (2004).

    Article  CAS  Google Scholar 

  14. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  Google Scholar 

  15. Weber, W. et al. A synthetic time-delay circuit in mammalian cells and mice. Proc. Natl. Acad. Sci. USA 104, 2643–2648 (2007).

    Article  CAS  Google Scholar 

  16. Grilly, C., Stricker, J., Pang, W.L., Bennett, M.R. & Hasty, J. A synthetic gene network for tuning protein degradation in Saccharomyces cerevisiae. Mol. Syst. Biol. 3, 127 (2007).

    Article  Google Scholar 

  17. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  Google Scholar 

  18. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    Article  CAS  Google Scholar 

  19. Tigges, M., Marquez-Lago, T.T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

    Article  CAS  Google Scholar 

  20. Marguet, P., Balagadde, F., Tan, C. & You, L. Biology by design: reduction and synthesis of cellular components and behaviour. J. R. Soc. Interface 4, 607–623 (2007).

    Article  CAS  Google Scholar 

  21. Yokobayashi, Y., Weiss, R. & Arnold, F.H. Directed evolution of a genetic circuit. Proc. Natl. Acad. Sci. USA 99, 16587–16591 (2002).

    Article  CAS  Google Scholar 

  22. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA 101, 8414–8419 (2004).

    Article  CAS  Google Scholar 

  23. Acar, M., Becskei, A. & van Oudenaarden, A. Enhancement of cellular memory by reducing stochastic transitions. Nature 435, 228–232 (2005).

    Article  CAS  Google Scholar 

  24. Blake, W.J. et al. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865 (2006).

    Article  CAS  Google Scholar 

  25. Pedraza, J.M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005).

    Article  CAS  Google Scholar 

  26. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26, 787–793 (2008).

    Article  CAS  Google Scholar 

  27. Cox, R.S. III, Surette, M.G. & Elowitz, M.B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

    PubMed  PubMed Central  Google Scholar 

  28. Gertz, J., Siggia, E.D. & Cohen, B.A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457, 215–218 (2009).

    Article  CAS  Google Scholar 

  29. Murphy, K.F., Balazsi, G. & Collins, J.J. Combinatorial promoter design for engineering noisy gene expression. Proc. Natl. Acad. Sci. USA 104, 12726–12731 (2007).

    Article  CAS  Google Scholar 

  30. Alper, H., Moxley, J., Nevoigt, E., Fink, G.R. & Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314, 1565–1568 (2006).

    Article  CAS  Google Scholar 

  31. Jensen, P.R. & Hammer, K. Artificial promoters for metabolic optimization. Biotechnol. Bioeng. 58, 191–195 (1998).

    Article  CAS  Google Scholar 

  32. Hammer, K., Mijakovic, I. & Jensen, P.R. Synthetic promoter libraries–tuning of gene expression. Trends Biotechnol. 24, 53–55 (2006).

    Article  CAS  Google Scholar 

  33. Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102, 12678–12683 (2005).

    Article  CAS  Google Scholar 

  34. Jensen, P.R. & Hammer, K. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64, 82–87 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hillen, W. & Berens, C. Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu. Rev. Microbiol. 48, 345–369 (1994).

    Article  CAS  Google Scholar 

  36. Johnston, M. & Davis, R.W. Sequences that regulate the divergent GAL1–GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4, 1440–1448 (1984).

    Article  CAS  Google Scholar 

  37. Cormack, B.P. et al. Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans. Microbiology 143, 303–311 (1997).

    Article  CAS  Google Scholar 

  38. Schirmaier, F. & Philippsen, P. Identification of two genes coding for the translation elongation factor EF-1 alpha of S. cerevisiae. EMBO J. 3, 3311–3315 (1984).

    Article  CAS  Google Scholar 

  39. Floer, M., Bryant, G.O. & Ptashne, M. HSP90/70 chaperones are required for rapid nucleosome removal upon induction of the GAL genes of yeast. Proc. Natl. Acad. Sci. USA 105, 2975–2980 (2008).

    Article  CAS  Google Scholar 

  40. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA 100, 11980–11985 (2003).

    Article  CAS  Google Scholar 

  41. Scrable, H. & Stambrook, P.J. Activation of the lac repressor in the transgenic mouse. Genetics 147, 297–304 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaplan, S., Bren, A., Dekel, E. & Alon, U. The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol. Syst. Biol. 4, 203 (2008).

    Article  Google Scholar 

  43. Entus, R., Aufderheide, B., Herbert, M. & Sauro, M.H. Design and implementation of three incoherent feed-forward motif based biological concentration sensors. Syst. Synth. Biol. 1, 119–128 (2007).

    Article  Google Scholar 

  44. Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753–767 (2007).

    Article  CAS  Google Scholar 

  45. Wang, X., Hao, N., Dohlman, H.G. & Elston, T.C. Bistability, stochasticity, and oscillations in the mitogen-activated protein kinase cascade. Biophys. J. 90, 1961–1978 (2006).

    Article  CAS  Google Scholar 

  46. Strogatz, S.H . Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Addison-Wesley, Reading, Massachusetts, 1994).

  47. Guo, B., Styles, C.A., Feng, Q. & Fink, G.R. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc. Natl. Acad. Sci. USA 97, 12158–12163 (2000).

    Article  CAS  Google Scholar 

  48. Verstrepen, K.J. & Klis, F.M. Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol. 60, 5–15 (2006).

    Article  CAS  Google Scholar 

  49. Smukalla, S. et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135, 726–737 (2008).

    Article  CAS  Google Scholar 

  50. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Accurate prediction of gene feedback circuit behavior from component properties. Mol. Syst. Biol. 3, 143 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P.R. Jensen for advice on promoter library synthesis methods, K. Verstrepen for guidance and materials relating to yeast flocculation and H.H. Lee for valuable ideas in genetic device construction. This work was supported by the National Institutes of Health (NIH) through the NIH Director's Pioneer Award Program, grant number DP1 OD003644, the National Science Foundation Frontiers in Integrative Biological Research program and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

T.E., X.W. and J.J.C. designed the study; T.E. performed the experiments; X.W. conducted the modeling work; T.E., X.W. and J.J.C. analyzed the data and wrote the paper.

Corresponding author

Correspondence to James J Collins.

Supplementary information

Supplementary Text and Figures

Supplementary Methods (PDF 579 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, T., Wang, X. & Collins, J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol 27, 465–471 (2009). https://doi.org/10.1038/nbt.1536

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing