Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance

Subjects

Abstract

Mesoporous ceramics and semiconductors enable low-cost solar power, solar fuel, (photo)catalyst and electrical energy storage technologies1. State-of-the-art, printable high-surface-area electrodes are fabricated from thermally sintered pre-formed nanocrystals2,3,4,5. Mesoporosity provides the desired highly accessible surfaces but many applications also demand long-range electronic connectivity and structural coherence6. A mesoporous single-crystal (MSC) semiconductor can meet both criteria. Here we demonstrate a general synthetic method of growing semiconductor MSCs of anatase TiO2 based on seeded nucleation and growth inside a mesoporous template immersed in a dilute reaction solution. We show that both isolated MSCs and ensembles incorporated into films have substantially higher conductivities and electron mobilities than does nanocrystalline TiO2. Conventional nanocrystals, unlike MSCs, require in-film thermal sintering to reinforce electronic contact between particles, thus increasing fabrication cost, limiting the use of flexible substrates and precluding, for instance, multijunction solar cell processing. Using MSC films processed entirely below 150 °C, we have fabricated all-solid-state, low-temperature sensitized solar cells that have 7.3 per cent efficiency, the highest efficiency yet reported. These high-surface-area anatase single crystals will find application in many different technologies, and this generic synthetic strategy extends the possibility of mesoporous single-crystal growth to a range of functional ceramics and semiconductors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MSC synthesis of TiO2.
Figure 2: X-ray and electron diffraction of mesoporous TiO 2 crystals.
Figure 3: MSC size control via nucleation seed density.
Figure 4: Electronic properties and device performance of MSCs.

Similar content being viewed by others

References

  1. Weickert, J., Dunbar, R. B., Hesse, H. C., Wiedemann, W. & Schmidt-Mende, L. Nanostructured organic and hybrid solar cells. Adv. Mater. 23, 1810–1828 (2011)

    Article  CAS  Google Scholar 

  2. Yella, A. et al. Porphyrin-sensitized solar cells with cobalt (ii/iii) based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011)

    Article  CAS  ADS  Google Scholar 

  3. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 . Nature 353, 737–740 (1991)

    Article  CAS  ADS  Google Scholar 

  4. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001)

    Article  ADS  Google Scholar 

  5. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  CAS  ADS  Google Scholar 

  6. Docampo, P., Guldin, S., Steiner, U. & Snaith, H. J. Charge transport limitations in self-assembled TiO2 photoanodes for solid-state dye-sensitized solar cells. J. Phys. Chem. Lett.. http://dx.doi.org/10.1021/jz400084n (in the press)

  7. Schüth, F. Endo- and exotemplating to create high-surface-area inorganic materials. Angew. Chem. Int. Edn 42, 3604–3622 (2003)

    Article  Google Scholar 

  8. Lu, A.-H. & Schüth, F. Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv. Mater. 18, 1793–1805 (2006)

    Article  CAS  Google Scholar 

  9. Dickinson, C. et al. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica. Chem. Mater. 18, 3088–3095 (2006)

    Article  CAS  Google Scholar 

  10. Tian, B. et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv. Mater. 15, 1370–1374 (2003)

    Article  CAS  Google Scholar 

  11. Yue, W. & Zhou, W. Synthesis of porous single crystals of metal oxides via a solid–liquid route. Chem. Mater. 19, 2359–2363 (2007)

    Article  CAS  Google Scholar 

  12. Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalised synthesis of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998)

    Article  CAS  ADS  Google Scholar 

  13. Li, D., Zhou, H. & Honma, I. Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystallization. Nature Mater. 3, 65–72 (2004)

    Article  CAS  ADS  Google Scholar 

  14. Yu, J. C., Wang, X. & Fu, X. Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films. Chem. Mater. 16, 1523–1530 (2004)

    Article  CAS  Google Scholar 

  15. Kondo, J. N. & Domen, K. Crystallization of mesoporous metal oxides. Chem. Mater. 20, 835–847 (2008)

    Article  CAS  ADS  Google Scholar 

  16. Yue, W. & Zhou, W. Crystalline mesoporous metal oxide. Prog. Nat. Sci. 18, 1329–1338 (2008)

    Article  CAS  Google Scholar 

  17. Jiao, K. et al. Growth of porous single-crystal Cr2O3 in a 3D mesopore system. Chem. Commun. 5618–5620 (2005)

  18. Arora, H. et al. Block copolymer self-assembly-directed single-crystal homo- and heteroepitaxial nanostructures. Science 330, 214–219 (2010)

    Article  CAS  ADS  Google Scholar 

  19. Yue, W. et al. Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chem. Mater. 21, 2540–2546 (2009)

    Article  CAS  Google Scholar 

  20. Bian, Z. et al. Single-crystal-like titania mesocages. Angew. Chem. Int. Edn 50, 1105–1108 (2011)

    Article  CAS  Google Scholar 

  21. Finnemore, A. S. et al. Nanostructured calcite single crystals with gyroid morphologies. Adv. Mater. 21, 3928–3932 (2009)

    Article  CAS  Google Scholar 

  22. Crossland, E. J. W. et al. A bicontinuous double gyroid dye-sensitized solar cell. Nano Lett. 9, 2807–2812 (2009)

    Article  CAS  ADS  Google Scholar 

  23. Yang, H. G. et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638–641 (2008)

    Article  CAS  ADS  Google Scholar 

  24. Zhang, D., Li, G., Yang, X. & Yu, J. C. A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chem. Commun. 4381–4383 (2009)

  25. Liu, G., Yu, J. C., Lu, G. Q. M. & Cheng, H.-M. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem. Commun. 47, 6763–6783 (2011)

    Article  CAS  Google Scholar 

  26. Nakade, S. et al. Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells. J. Phys. Chem. B 106, 10004–10010 (2002)

    Article  CAS  Google Scholar 

  27. Jiang, C. Y. et al. Low temperature processing solid-state dye sensitized solar cells. Appl. Phys. Lett. 100, 113901 (2012)

    Article  ADS  Google Scholar 

  28. Schmidt-Mende, L. et al. Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv. Mater. 17, 813–815 (2005)

    Article  CAS  Google Scholar 

  29. Bogush, G. H., Tracy, M. A. & Zukoski, C. Z. IV Preparation of monodisperse silica particles: control of size and mass fraction. J. Non-Cryst. Solids 104, 95–106 (1988)

    Article  CAS  ADS  Google Scholar 

  30. Docampo, P. et al. Control of solid-state dye-sensitized solar cell performance by block-copolymer-directed TiO2 synthesis. Adv. Funct. Mater. 20, 1787–1796 (2010)

    Article  CAS  Google Scholar 

  31. Zakeeruddin, S. M. et al. Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films. Langmuir 18, 952–954 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 246124 of the SANS project, the European Research Council (HYPER project number 279881), the Rhodes Trust, the Engineering and Physical Sciences Research Council, and the Government of the Republic of Trinidad and Tobago. We thank C. Ducati for help with indexing of electron diffraction patterns.

Author information

Authors and Affiliations

Authors

Contributions

E.J.W.C. and H.J.S. conceived the idea of the project. E.J.W.C. devised and performed materials synthesis and characterization. N.N. and V.S. fabricated and characterized solar cells and optoelectronic devices. T.L. and J.A.A.-W. contributed to electronic mobility measurements. E.J.W.C., H.J.S. and V.S. wrote the manuscript. All authors commented on the manuscript. H.J.S. supervised the project.

Corresponding author

Correspondence to Henry J. Snaith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4. (PDF 4581 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crossland, E., Noel, N., Sivaram, V. et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215–219 (2013). https://doi.org/10.1038/nature11936

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11936

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing