Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable ion–photon entanglement in an optical cavity

Subjects

Abstract

Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states1,2. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions3,4, neutral atoms5,6, atomic ensembles7,8 and nitrogen-vacancy spins9. The entangling interaction couples an initial quantum memory state to two possible light–matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state4 (a step that requires coherent control). Here we report fully tunable entanglement between a single 40Ca+ ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental apparatus and entanglement sequence.
Figure 2: Quantum state tomography of the joint ion–photon state, containing 40,000 events.
Figure 3: State tomography as a function of Raman phase (340,000 events).
Figure 4: State tomography for three values of amplitude, cos α.

Similar content being viewed by others

References

  1. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  CAS  ADS  Google Scholar 

  2. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    Article  CAS  ADS  Google Scholar 

  3. Blinov, B. B., Moehring, D. L., Duan, L. M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004)

    Article  CAS  ADS  Google Scholar 

  4. Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009)

    Article  CAS  ADS  Google Scholar 

  5. Volz, J. et al. Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    Article  ADS  Google Scholar 

  6. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    Article  CAS  ADS  Google Scholar 

  7. Matsukevich, D. N. et al. Entanglement of a photon and a collective atomic excitation. Phys. Rev. Lett. 95, 040405 (2005)

    Article  CAS  ADS  Google Scholar 

  8. Sherson, J. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006)

    Article  CAS  ADS  Google Scholar 

  9. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    Article  CAS  ADS  Google Scholar 

  10. Law, C. & Kimble, H. Deterministic generation of a bit-stream of single-photon pulses. J. Mod. Opt. 44, 2067–2074 (1997)

    Article  CAS  ADS  Google Scholar 

  11. Weber, B. et al. Photon-photon entanglement with a single trapped atom. Phys. Rev. Lett. 102, 030501 (2009)

    Article  CAS  ADS  Google Scholar 

  12. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003)

    Article  CAS  ADS  Google Scholar 

  13. Häffner, H., Roos, C. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  CAS  ADS  Google Scholar 

  15. Maunz, P. et al. Heralded quantum gate between remote quantum memories. Phys. Rev. Lett. 102, 250502 (2009)

    Article  CAS  ADS  Google Scholar 

  16. Russo, C. et al. Raman spectroscopy of a single ion coupled to a high-finesse cavity. Appl. Phys. B 95, 205–212 (2009)

    Article  CAS  ADS  Google Scholar 

  17. Stute, A. et al. Toward an ion–photon quantum interface in an optical cavity. Appl. Phys. B http://dx.doi.org/10.1007/s00340-011-4861-0 (published online, 13 January 2012)

  18. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  19. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    Article  CAS  ADS  Google Scholar 

  20. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004)

    Article  CAS  ADS  Google Scholar 

  21. Hijlkema, M. et al. A single-photon server with just one atom. Nature Phys. 3, 253–255 (2007)

    Article  CAS  ADS  Google Scholar 

  22. Barros, H. G. et al. Deterministic single-photon source from a single ion. N. J. Phys. 11, 103004 (2009)

    Article  Google Scholar 

  23. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  CAS  ADS  Google Scholar 

  24. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  25. Rosenfeld, W. et al. Towards a loophole-free test of Bell's inequality with entangled pairs of neutral atoms. Adv. Sci. Lett. 2, 469–474 (2009)

    Article  CAS  Google Scholar 

  26. Economou, S. E., Lindner, N. & Rudolph, T. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett. 105, 093601 (2010)

    Article  ADS  Google Scholar 

  27. Ježek, M., Fiurášek, J. & Hradil, Z. Quantum inference of states and processes. Phys. Rev. A 68, 012305 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  28. Davison, A. & Hinkley, D. Bootstrap Methods and Their Application (Cambridge Univ. Press, 1997)

    Book  Google Scholar 

  29. Shore, B. The Theory of Coherent Atomic Excitation (Wiley, 1990)

    Google Scholar 

  30. Rempe, G., Thompson, R. J., Brecha, R. J., Lee, W. D. & Kimble, H. J. Optical bistability and photon statistics in cavity quantum electrodynamics. Phys. Rev. Lett. 67, 1727–1730 (1991)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Barreiro, D. Nigg, K. Hammerer and W. Rosenfeld for discussions. This work was supported by the Austrian Science Fund (FWF), the European Commission (AQUTE), the Institut für Quanteninformation GmbH, and a Marie Curie International Incoming Fellowship within the 7th European Framework Program.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were performed by A.S., B.C. and T.E.N., with contributions from P.S. to the set-up. Data analysis was performed by A.S., B.C. and T.M. The experiment was conceived by P.O.S. and R.B. and further developed in discussions with A.S., B.B., B.C. and T.E.N. All authors contributed to the discussion of results and participated in manuscript preparation.

Corresponding author

Correspondence to T. E. Northup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stute, A., Casabone, B., Schindler, P. et al. Tunable ion–photon entanglement in an optical cavity. Nature 485, 482–485 (2012). https://doi.org/10.1038/nature11120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11120

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing