Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Piezo proteins are pore-forming subunits of mechanically activated channels

Abstract

Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a 1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human cells expressing Drosophila Piezo (DmPiezo) show large mechanically activated currents.
Figure 2: Ruthenium red is a channel pore blocker of MmPiezo1- but not DmPiezo-induced currents.
Figure 3: MmPiezo1- and DmPiezo-induced stretch-activated channels have different conductances.
Figure 4: MmPiezo1 forms homo-oligomers.
Figure 5: MmPiezo1 forms ruthenium-red-sensitive ion channels.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

The DmPiezo sequence has been deposited in GenBank under accession number JQ425255.

References

  1. Corey, D. P. & Hudspeth, A. J. Response latency of vertebrate hair cells. Biophys. J. 26, 499–506 (1979)

    Article  CAS  Google Scholar 

  2. McCarter, G. C., Reichling, D. B. & Levine, J. D. Mechanical transduction by rat dorsal root ganglion neurons in vitro. Neurosci. Lett. 273, 179–182 (1999)

    Article  CAS  Google Scholar 

  3. Davis, M. J., Donovitz, J. A. & Hood, J. D. Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am. J. Physiol. 262, C1083–C1088 (1992)

    Article  CAS  Google Scholar 

  4. Praetorius, H. A. & Spring, K. R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184, 71–79 (2001)

    Article  CAS  Google Scholar 

  5. Chalfie, M. Neurosensory mechanotransduction. Nature Rev. Mol. Cell Biol. 10, 44–52 (2009)

    Article  CAS  Google Scholar 

  6. Delmas, P., Hao, J. & Rodat-Despoix, L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nature Rev. Neurosci. 12, 139–153 (2011)

    Article  CAS  Google Scholar 

  7. Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001)

    Article  CAS  Google Scholar 

  8. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010)

    Article  CAS  ADS  Google Scholar 

  9. Bae, C., Sachs, F. & Gottlieb, P. A. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 50, 6295–6300 (2011)

    Article  CAS  Google Scholar 

  10. Reed-Geaghan, E. G. & Maricich, S. M. Peripheral somatosensation: a touch of genetics. Curr. Opin. Genet. Dev. 21, 240–248 (2011)

    Article  CAS  Google Scholar 

  11. Nilius, B. Pressing and squeezing with Piezos. EMBO Rep. 11, 902–903 (2010)

    Article  CAS  Google Scholar 

  12. Gong, Z. et al. Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci. 24, 9059–9066 (2004)

    Article  CAS  Google Scholar 

  13. Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila. Nature 424, 81–84 (2003)

    Article  CAS  ADS  Google Scholar 

  14. Tracey, W. D., Jr, Wilson, R. I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell 113, 261–273 (2003)

    Article  CAS  Google Scholar 

  15. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000)

    Article  CAS  ADS  Google Scholar 

  16. Zhong, L., Hwang, R. Y. & Tracey, W. D. Pickpocket is a DEG/ENaC protein required for mechanical nociception in Drosophila larvae. Curr. Biol. 20, 429–434 (2010)

    Article  CAS  Google Scholar 

  17. Coste, B., Crest, M. & Delmas, P. Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2+ currents, and mechanically activated cation currents in different populations of DRG neurons. J. Gen. Physiol. 129, 57–77 (2007)

    Article  CAS  Google Scholar 

  18. Drew, L. J., Wood, J. N. & Cesare, P. Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons. J. Neurosci. 22, RC228 (2002)

    Article  Google Scholar 

  19. Kim, S. E., Coste, B., Chadha, A., Cook, B. & Patapoutian, A. The role of Drosophila Piezo in mechanical nociception. Naturehttp://dx.doi.org/10.1038/nature10801 (this issue)

  20. Voets, T. et al. Molecular determinants of permeation through the cation channel TRPV4. J. Biol. Chem. 277, 33704–33710 (2002)

    Article  CAS  Google Scholar 

  21. Voets, T. et al. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 279, 19–25 (2004)

    Article  CAS  Google Scholar 

  22. Ulbrich, M. H. & Isacoff, E. Y. Subunit counting in membrane-bound proteins. Nature Methods 4, 319–321 (2007)

    Article  CAS  Google Scholar 

  23. Bayley, H. et al. Droplet interface bilayers. Mol. Biosyst. 4, 1191–1208 (2008)

    Article  CAS  Google Scholar 

  24. Montal, M. Asymmetric lipid bilayers. Reponse to multivalent ions. Biochim. Biophys. Acta 298, 750–754 (1973)

    Article  CAS  Google Scholar 

  25. Montal, M. & Mueller, P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl Acad. Sci. USA 69, 3561–3566 (1972)

    Article  CAS  ADS  Google Scholar 

  26. Santos, J. S., Grigoriev, S. M. & Montal, M. Molecular template for a voltage sensor in a novel K+ channel. III. Functional reconstitution of a sensorless pore module from a prokaryotic Kv channel. J. Gen. Physiol. 132, 651–666 (2008)

    Article  CAS  Google Scholar 

  27. Leventis, P. A. & Grinstein, S. The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39, 407–427 (2010)

    Article  CAS  Google Scholar 

  28. Ermakov, Y. A., Kamaraju, K., Sengupta, K. & Sukharev, S. Gadolinium ions block mechanosensitive channels by altering the packing and lateral pressure of anionic lipids. Biophys. J. 98, 1018–1027 (2010)

    Article  CAS  ADS  Google Scholar 

  29. Gambale, F. & Montal, M. Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Biophys. J. 53, 771–783 (1988)

    Article  CAS  ADS  Google Scholar 

  30. Oliver, D. et al. Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304, 265–270 (2004)

    Article  CAS  ADS  Google Scholar 

  31. Schmidt, D. & MacKinnon, R. Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane. Proc. Natl Acad. Sci. USA 105, 19276–19281 (2008)

    Article  CAS  ADS  Google Scholar 

  32. Tao, X. & MacKinnon, R. Functional analysis of Kv1.2 and paddle chimera Kv channels in planar lipid bilayers. J. Mol. Biol. 382, 24–33 (2008)

    Article  CAS  Google Scholar 

  33. Hartman, N. C. & Groves, J. T. Signaling clusters in the cell membrane. Curr. Opin. Cell Biol. 23, 370–376 (2011)

    Article  CAS  Google Scholar 

  34. Schagger, H., Cramer, W. A. & von Jagow, G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217, 220–230 (1994)

    Article  CAS  Google Scholar 

  35. Gambale, F. & Montal, M. Voltage-gated sodium channels expressed in the human cerebellar medulloblastoma cell line TE671. Brain Res. Mol. Brain Res. 7, 123–129 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. H. Ulbrich for providing Ca2+ channel-, NMDA receptor- and CNG channel–GFP fusion constructs used as controls for photobleaching experiments. This research was supported by grants from the National Institutes of Dental and Craniofacial Research, Neurological Disorders, General Medical Sciences, and by The Genomics Institute of the Novartis Research Foundation. B.X. and J.G. are postdoctoral fellowship recipients from the American Heart Association and the NIH, respectively.

Author information

Authors and Affiliations

Authors

Contributions

B.C. performed and analysed electrophysiological experiments. B.X. performed and analysed biochemical experiments. J.S.S. and R.S. performed the reconstitution experiments and together with M.M. analysed the single channel data. J.G. and K.S.S. performed and analysed photo-bleaching experiments. S.E.K. cloned the Dmpiezo gene. M.S. initiated biochemical experiments. J.M. generated GFP-MmPiezo1 and the mRNA used for oocyte injection. A.E.D. provided technical help for oocyte experiments. A.P., B.C., B.X., J.G., J.S.S., R.S., and M.M. wrote the manuscript.

Corresponding authors

Correspondence to Mauricio Montal or Ardem Patapoutian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6 with legends and Supplementary Tables 1-3. (PDF 1538 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coste, B., Xiao, B., Santos, J. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483, 176–181 (2012). https://doi.org/10.1038/nature10812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10812

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing