Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A gas cloud on its way towards the supermassive black hole at the Galactic Centre

Abstract

Measurements of stellar orbits1,2,3 provide compelling evidence4,5 that the compact radio source Sagittarius A* at the Galactic Centre is a black hole four million times the mass of the Sun. With the exception of modest X-ray and infrared flares6,7, Sgr A* is surprisingly faint, suggesting that the accretion rate and radiation efficiency near the event horizon are currently very low3,8. Here we report the presence of a dense gas cloud approximately three times the mass of Earth that is falling into the accretion zone of Sgr A*. Our observations tightly constrain the cloud’s orbit to be highly eccentric, with an innermost radius of approach of only 3,100 times the event horizon that will be reached in 2013. Over the past three years the cloud has begun to disrupt, probably mainly through tidal shearing arising from the black hole’s gravitational force. The cloud’s dynamic evolution and radiation in the next few years will probe the properties of the accretion flow and the feeding processes of the supermassive black hole. The kilo-electronvolt X-ray emission of Sgr A* may brighten significantly when the cloud reaches pericentre. There may also be a giant radiation flare several years from now if the cloud breaks up and its fragments feed gas into the central accretion zone.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infalling dust/gas cloud in the Galactic Centre.
Figure 2: The velocity shear in the gas cloud.
Figure 3: Test particle simulation of the orbital tidal disruption.

Similar content being viewed by others

References

  1. Ghez, A. M. et al. Measuring distance and properties of the Milky Way's central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Gillessen, S. et al. Monitoring stellar orbits around the massive black hole in the Galactic Center. Astrophys. J. 692, 1075–1109 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Genzel, R., Eisenhauer, F. & Gillessen, S. The Galactic Center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Reid, M. J., Menten, K. M., Trippe, S., Ott, T. & Genzel, R. The position of Sagittarius A*. III. Motion of the stellar cusp. Astrophys. J. 659, 378–388 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Doeleman, S. S. et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature 455, 78–80 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Baganoff, F. K. et al. Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre. Nature 413, 45–48 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Genzel, R. et al. Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature 425, 934–937 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Marrone, D. P., Moran, J. M., Zhao, J.-H. & Rao, R. An unambiguous detection of Faraday rotation in Sagittarius A*. Astrophys. J. 654, L57–L60 (2007)

    Article  ADS  Google Scholar 

  9. Lenzen, R., Hofmann, R., Bizenberger, P. & Tusche, A. CONICA: the high-resolution near-infrared camera for the ESO VLT. Proc. SPIE (ed. Fowler, A. M.). 3354, 606–614 (1998)

  10. Eisenhauer, F. et al. SINFONI—Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT. Proc. SPIE (eds Iye, M. & Moorwood, A. F. M.). 4841, 1548–1561 (2003)

  11. Bonnet, H. et al. Implementation of MACAO for SINFONI at the Cassegrain focus of VLT, in NGS and LGS modes. Proc. SPIE (ed. Wizinowich, P.). 4839, 329–343 (2003)

  12. Zhao, J. H., Morris, M. M., Goss, W. M. & An, T. Dynamics of ionized gas at the Galactic Center: Very Large Array observations of the three-dimensional velocity field and location of the ionized streams in Sagittarius A West. Astrophys. J. 699, 186–214 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Martins, F. et al. Stellar and wind properties of massive stars in the central parsec of the Galaxy. Astron. Astrophys. 468, 233–254 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Scoville, N. Z., Stolovy, S. R., Rieke, M., Christopher, M. & Yusef-Zadeh, F. Hubble Space Telescope Paα and 1.9 micron imaging of Sagittarius A West. Astrophys. J. 594, 294–311 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Xu, Y.-D., Narayan, R., Quataert, E., Yuan, F. & Baganoff, F. K. Thermal X-ray iron line emission from the Galactic Center black hole Sagittarius A*. Astrophys. J. 640, 319–326 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Yuan, F., Quataert, E. & Narajan, R. Nonthermal electrons in radiatively inefficient accretion flow models of Sagittarius A*. Astrophys. J. 598, 301–312 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Klein, R. I., McKee, C. F. & Colella, P. On the hydrodynamic interaction of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds. Astrophys. J. 420, 213–236 (1994)

    Article  ADS  Google Scholar 

  18. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability 428–514 (Dover Publications, 1961)

    MATH  Google Scholar 

  19. Murray, S. D. &. Lin, D. N. C. Energy dissipation in multiphase infalling clouds in galaxy halos. Astrophys. J. 615, 586–594 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Cooper, J. L., Bicknell, G. V., Sutherland, R. S. & Bland-Hawthorn, J. Starburst-driven galactic winds: filament formation and emission processes. Astrophys. J. 703, 330–347 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Baganoff, F. K. et al. Chandra X-ray spectroscopic imaging of Sgr A* and the central parsec of the Galaxy. Astrophys. J. 591, 891–915 (2003)

    Article  ADS  Google Scholar 

  22. Sanders, R. H. The circumnuclear material in the Galactic Centre—a clue to the accretion process. Mon. Not. R. Astron. Soc. 294, 35–46 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Sharma, P. Quataert, E. Hammett, G. W. & Stone, J. M. Electron heating in hot accretion flows. Astrophys. J. 667, 714–723 (2007)

    Article  ADS  Google Scholar 

  24. Blandford, R. D. & Begelman, M. C. On the fate of gas accreting at a low rate on to a black hole. Mon. Not. R. Astron. Soc. 303, L1–L5 (1999)

    Article  ADS  Google Scholar 

  25. Bartko, H. et al. Evidence for warped disks of young stars in the Galactic Center. Astrophys. J. 697, 1741–1763 (2009)

    Article  ADS  Google Scholar 

  26. Martins, F. et al. GCIRS 16SW: a massive eclipsing binary in the Galactic Center. Astrophys. J. 649, L103–L106 (2006)

    Article  ADS  Google Scholar 

  27. Ozernoy, L. M., Genzel, R. & Usov, V. V. Colliding winds in the stellar core at the Galactic Centre: some implications. Mon. Not. R. Astron. Soc. 288, 237–244 (1997)

    Article  ADS  Google Scholar 

  28. Cuadra, J., Nayakshin, S., Springel, V. & Di Matteo, T. Accretion of cool stellar winds on to Sgr A*: another puzzle of the Galactic Centre? Mon. Not. R. Astron. Soc. 260, L55–L59 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper is based on observations at the Very Large Telescope (VLT) of the European Observatory (ESO) in Chile. We thank C. McKee and R. Klein for discussions on the cloud destruction process. J.C. acknowledges support from FONDAP, FONDECYT, Basal and VRI-PUC. A.B. acknowledges the support of the excellence cluster 'Origin and Structure of the Universe'.

Author information

Authors and Affiliations

Authors

Contributions

S.G. collected and analysed the data and discovered the orbit of the gas cloud. R.G. and S.G. wrote the paper. T.K.F. detected the high proper motion and extracted the astrometric positions and the photometry. R.G., A.B. and E.Q. derived the cloud’s properties, its evolution and the estimate of the X-ray luminosity. R.G., E.Q., A.B. and C.F.G. contributed to the analytical estimates. C.A. and J.C. set up numerical simulations to check the analysis. F.E., O.P. and K.D.-E. helped in the data analysis and interpretation. T.O. provided valuable software tools.

Corresponding authors

Correspondence to S. Gillessen or R. Genzel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data, Supplementary Figures 1-4 with legends and additional references. (PDF 2306 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillessen, S., Genzel, R., Fritz, T. et al. A gas cloud on its way towards the supermassive black hole at the Galactic Centre. Nature 481, 51–54 (2012). https://doi.org/10.1038/nature10652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10652

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing