Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a fucose transporter in an outward-open conformation

Abstract

The major facilitator superfamily (MFS) transporters are an ancient and widespread family of secondary active transporters1. In Escherichia coli, the uptake of l-fucose, a source of carbon for microorganisms, is mediated by an MFS proton symporter, FucP2,3. Despite intensive study of the MFS transporters, atomic structure information is only available on three proteins and the outward-open conformation has yet to be captured4,5,6. Here we report the crystal structure of FucP at 3.1 Å resolution, which shows that it contains an outward-open, amphipathic cavity. The similarly folded amino and carboxyl domains of FucP have contrasting surface features along the transport path, with negative electrostatic potential on the N domain and hydrophobic surface on the C domain. FucP only contains two acidic residues along the transport path, Asp 46 and Glu 135, which can undergo cycles of protonation and deprotonation. Their essential role in active transport is supported by both in vivo and in vitro experiments. Structure-based biochemical analyses provide insights into energy coupling, substrate recognition and the transport mechanism of FucP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FucP has an outward-open conformation.
Figure 2: Alternating access achieved by concentric, rigid-body rotation of the N and C domains of FucP.
Figure 3: The cavity-facing sides of the N and C domains have contrasting surface electrostatic potentials.
Figure 4: A working model for the l -fucose/H + symport by FucP.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates and structure factors of wild-type FucP and FucP (Asn162 Ala) have been deposited in the Protein Data Bank under the accession codes 3O7Q and 3O7P, respectively.

References

  1. Pao, S. S., Paulsen, I. T. & Saier, M. H., Jr Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bradley, S. A., Tinsley, C. R., Muiry, J. A. & Henderson, P. J. Proton-linked L-fucose transport in Escherichia coli . Biochem. J. 248, 495–500 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gunn, F. J., Tate, C. G. & Henderson, P. J. Identification of a novel sugar-H+ symport protein, FucP, for transport of L-fucose into Escherichia coli . Mol. Microbiol. 12, 799–809 (1994)

    Article  CAS  PubMed  Google Scholar 

  4. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli . Science 301, 610–615 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D. N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli . Science 301, 616–620 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Yin, Y., He, X., Szewczyk, P., Nguyen, T. & Chang, G. Structure of the multidrug transporter EmrD from Escherichia coli . Science 312, 741–744 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Becker, D. J. & Lowe, J. B. Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R–53R (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Paulsen, I. T., Chauvaux, S., Choi, P. & Saier, M. H., Jr Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose:H+ symporter. J. Bacteriol. 180, 498–504 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Christensen, M. et al. Regulation of expression of the 2-deoxy-D-ribose utilization regulon, deoQKPX, from Salmonella enterica serovar typhimurium. J. Bacteriol. 185, 6042–6050 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Psakis, G. et al. The sodium-dependent D-glucose transport protein of Helicobacter pylori . Mol. Microbiol. 71, 391–403 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. Horiba, N. et al. Cloning and characterization of a novel Na+-dependent glucose transporter (NaGLT1) in rat kidney. J. Biol. Chem. 278, 14669–14676 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Law, C. J., Maloney, P. C. & Wang, D. N. Ins and outs of major facilitator superfamily antiporters. Annu. Rev. Microbiol. 62, 289–305 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guan, L. & Kaback, H. R. Lessons from lactose permease. Annu. Rev. Biophys. Biomol. Struct. 35, 67–91 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smirnova, I., Kasho, V., Sugihara, J. & Kaback, H. R. Probing of the rates of alternating access in LacY with Trp fluorescence. Proc. Natl Acad. Sci. USA 106, 21561–21566 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaback, H. R., Sahin-Toth, M. & Weinglass, A. B. The kamikaze approach to membrane transport. Nature Rev. Mol. Cell Biol. 2, 610–620 (2001)

    Article  CAS  Google Scholar 

  16. Kaback, H. R. Structure and mechanism of the lactose permease. C. R. Biol. 328, 557–567 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. Guan, L., Mirza, O., Verner, G., Iwata, S. & Kaback, H. R. Structural determination of wild-type lactose permease. Proc. Natl Acad. Sci. USA 104, 15294–15298 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mirza, O., Guan, L., Verner, G., Iwata, S. & Kaback, H. R. Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY. EMBO J. 25, 1177–1183 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gunn, F. J., Tate, C. G., Sansom, C. E. & Henderson, P. J. Topological analyses of the L-fucose-H+ symport protein, FucP, from Escherichia coli . Mol. Microbiol. 15, 771–783 (1995)

    Article  CAS  PubMed  Google Scholar 

  20. Franco, P. J. & Brooker, R. J. Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli . J. Biol. Chem. 269, 7379–7386 (1994)

    CAS  PubMed  Google Scholar 

  21. Guan, L. & Kaback, H. R. Binding affinity of lactose permease is not altered by the H+ electrochemical gradient. Proc. Natl Acad. Sci. USA 101, 12148–12152 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quick, M. et al. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proc. Natl Acad. Sci. USA 106, 5563–5568 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  25. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

    Article  PubMed  Google Scholar 

  26. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  27. Cowtan, K. DM: an automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newslett. Protein Crystallogr. 31, 34–38 (1994)

    Google Scholar 

  28. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  29. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  PubMed  Google Scholar 

  30. DeLano, W. L. PyMOL Molecular Viewerhttp://www.pymol.org〉 (2002)

    Google Scholar 

  31. Veenhoff, L. M. & Poolman, B. Substrate recognition at the cytoplasmic and extracellular binding site of the lactose transport protein of Streptococcus thermophilus. J. Biol. Chem. 274, 33244–33250 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Shimizu and T. Kumasaka at Spring-8 beamline BL41XU in Japan, and J. He and S. Huang at the Shanghai Synchrotron Radiation Facility (SSRF) for on-site assistance. This work was supported by funds from the Ministry of Science and Technology (grant number 2009CB918802) and by Tsinghua University 985 Phase II funds. N.Y. acknowledges support from the Yuyuan Foundation and the Li Foundation.

Author information

Authors and Affiliations

Authors

Contributions

N.Y. designed the experiments. S.D., L.S., Y.H., F.L. and Y.L. performed the experiments and analysed data. H.G., J.W. and N.Y. analyzed data. N.Y. wrote the manuscript.

Corresponding authors

Correspondence to Jiawei Wang or Nieng Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-12 with legends, and Supplementary Tables 1-2. (PDF 2230 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, S., Sun, L., Huang, Y. et al. Structure of a fucose transporter in an outward-open conformation. Nature 467, 734–738 (2010). https://doi.org/10.1038/nature09406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09406

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing