Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr

Abstract

Evidence for the deep recycling of surficial materials through the Earth’s mantle and their antiquity has long been sought to understand the role of subducting plates and plumes in mantle convection. Radiogenic isotope evidence for such recycling remains equivocal because the age and location of parent–daughter fractionation are not known. Conversely, while stable isotopes can provide irrefutable evidence for low-temperature fractionation, their range in most unaltered oceanic basalts is limited and the age of any variation is unconstrained. Here we show that δ18O ratios in basalts from the Azores are often lower than in pristine mantle. This, combined with increased Nb/B ratios and a large range in δ11B ratios, provides compelling evidence for the recycling of materials that had undergone fractionation near the Earth’s surface. Moreover, δ11B is negatively correlated with 187Os/188Os ratios, which extend to subchondritic values1, constraining the age of the high Nb/B, 11B-enriched endmember to be more than 2.5 billion years (Gyr) old. We infer this component to be melt- and fluid-depleted lithospheric mantle from a subducted oceanic plate, whereas other Azores basalts contain a contribution from 3-Gyr-old melt-enriched basalt2. We conclude that both components are most probably derived from an Archaean oceanic plate that was subducted, arguably into the deep mantle, where it was stored until thermal buoyancy caused it to rise beneath the Azores islands 3 Gyr later.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygen isotope variation across the Azores platform.
Figure 2: Variation of B isotopes with other geochemical indices in the Azores.
Figure 3: Variation of Os isotopes with other geochemical indices in the Azores.

Similar content being viewed by others

References

  1. Schaefer, B. F., Turner, S., Parkinson, I., Rogers, N. & Hawkesworth, C. Recycled Archaean oceanic mantle lithosphere in the Azores plume. Nature 420, 324–327 (2002)

    Article  ADS  Google Scholar 

  2. Elliott, T., Blichert-Toft, J., Heumann, A., Koetsier, G. & Forjaz, V. The origin of enriched mantle beneath Sao Miguel, Azores. Geochim. Cosmochim. Acta 71, 219–240 (2007)

    Article  ADS  CAS  Google Scholar 

  3. Hutko, A. R., Lay, T., Garnero, E. J. & Revenaugh, J. Seismic detection of folded, subducted lithosphere at the core–mantle boundary. Nature 441, 333–336 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997)

    Article  ADS  CAS  Google Scholar 

  6. DePaolo, D. J. & Wasserburg, G. J. Inferences about magma sources and mantle structure from variations in 143Nd/144Nd. Geophys. Res. Lett. 3, 743–746 (1976)

    Article  ADS  CAS  Google Scholar 

  7. Sun, S. S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts. Geol. Soc. Spec. Publ. 42, 313–345 (1989)

    Article  ADS  Google Scholar 

  8. Elliott, T., Thomas, A., Jeffcoate, A. & Niu, Y. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443, 565–568 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Eiler, J. M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319–364 (2001)

    Article  CAS  Google Scholar 

  10. Cooper, K. M., Eiler, J. M., Asimow, P. D. & Langmuir, C. H. Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet. Sci. Lett. 220, 297–316 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Chaussidon, M. & Jambon, A. Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet. Sci. Lett. 121, 277–291 (1994)

    Article  ADS  CAS  Google Scholar 

  12. Le Roux, P. J., Dixon, J. E., Shirey, S. B. & Hauri, E. H. Boron isotope compositions of South Atlantic MORB and mantle sources. Geochim. Cosmochim. Acta 69, abstr. A94 (2005)

    Google Scholar 

  13. Chaussidon, M. & Marty, B. Primitive boron isotope composition of the mantle. Science 269, 383–386 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Roy-Barman, M., Wasserburg, G. J., Papanastassiou, D. A. & Chaussidon, M. Osmium isotopic compositions and Re-Os concentrations in sulfide globules from basaltic glasses. Earth Planet. Sci. Lett. 154, 331–347 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Turner, S., Hawkesworth, C., Rogers, N. & King, P. U-Th isotope disequilibria and ocean island basalt generation in the Azores. Chem. Geol. 139, 145–164 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Bourdon, B., Turner, S. P. & Ribe, N. M. Partial melting and upwelling rates beneath the Azores from a U-series isotope perspective. Earth Planet. Sci. Lett. 239, 42–56 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Valley, J. W., Kitchen, N., Kohn, M. J., Niendorf, C. R. & Spicuzza, M. J. UWG-2, a garnet standard for oxygen isotope ratio: strategies for high precision and accuracy with laser heating. Geochim. Cosmochim. Acta 59, 5223–5231 (1995)

    Article  ADS  CAS  Google Scholar 

  18. Widom, E. & Farquhar, J. Oxygen isotope signatures in olivines from Sao Miguel (Azores) basalts: implications for crustal and mantle processes. Chem. Geol. 193, 237–255 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Widom, E. Ancient mantle in a modern plume. Nature 420, 281–282 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Leeman, W. P., Vocke, R. D., Beary, E. S. & Paulsen, P. J. Precise boron isotopic analysis of aqueous samples: ion exchange extraction and mass spectrometry. Geochim. Cosmochim. Acta 55, 3901–3907 (1991)

    Article  ADS  CAS  Google Scholar 

  21. Tonarini, S., Pennisi, M. & Leeman, W. P. Precise boron isotopic analysis of complex silicate (rock) samples using alkali carbonate fusion and ion exchange separation. Chem. Geol. 142, 129–137 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Ryan, J. G., Leeman, W. P., Morris, J. D. & Langmuir, C. H. The boron systematics of intraplate lavlas: implications for crust and mantle evolution. Geochim. Cosmochim. Acta 60, 415–422 (1996)

    Article  ADS  CAS  Google Scholar 

  23. Brenan, J. M. et al. Behaviour of boron, beryllium and lithium during partial melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim. Cosmochim. Acta 62, 2129–2141 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Brenan, J. M., Ryerson, F. J. & Shaw, H. F. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochim. Cosmochim. Acta 62, 3337–3347 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5 doi: 10.1029/2003GC000597 (2004)

  26. Ishikawa, T. & Nakamura, E. boron isotope geochemistry of the oceanic crust from DSDP/ODP hole 504B. Geochim. Cosmochim. Acta 56, 1633–1639 (1992)

    Article  ADS  CAS  Google Scholar 

  27. Leeman, W. P., Tonarini, S., Chan, L. H. & Borg, L. E. Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem. Geol. 212, 101–124 (2004)

    Article  ADS  CAS  Google Scholar 

  28. McKenzie, D. & O’Nions, R. K. The source regions of ocean island basalts. J. Petrol. 36, 133–160 (1995)

    Article  ADS  CAS  Google Scholar 

  29. Van Keken, P. E., Hauri, E. H. & Ballentine, C. J. Mantle mixing: the generation, preservation and destruction of chemical heterogeneity. Annu. Rev. Earth Planet. Sci. 30, 493–525 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Chaussidon, M. & Jambon, A. Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet. Sci. Lett. 121, 277–291 (1994)

    Article  ADS  CAS  Google Scholar 

  31. Nakano, T. & Nakamura, E. Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Phys. Earth Planet. Inter. 127, 233–252 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Rogers, K. Martyn and D. McKenzie, who originally supplied us with the samples analysed in this study, and also to T. Plank for the high-precision Nb concentration data. J. Valley provided access to his O isotope facility. We thank B. Bourdon, J. Gill, M. Reagan and A. Lini for discussions. A review by E. Hauri helped to improve the manuscript. S. Turner is funded by an ARC Federation Fellowship. This is GEMOC publication 466.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Turner.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, S., Tonarini, S., Bindeman, I. et al. Boron and oxygen isotope evidence for recycling of subducted components over the past 2.5 Gyr. Nature 447, 702–705 (2007). https://doi.org/10.1038/nature05898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05898

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing