Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

Abstract

The Palaeocene/Eocene thermal maximum, 55 million years ago, was a brief period of widespread, extreme climatic warming1,2,3, that was associated with massive atmospheric greenhouse gas input4. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition5. We show that sea surface temperatures near the North Pole increased from 18 °C to over 23 °C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations6, but the absolute polar temperatures that we derive before, during and after the event are more than 10 °C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms—perhaps polar stratospheric clouds7 or hurricane-induced ocean mixing8—to amplify early Palaeogene polar temperatures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of IODP Hole 302-4A within the palaeogeographic reconstruction of the Arctic Basin at late Palaeocene–early Eocene times.
Figure 2: Core recovery and palynological and geochemical results across the PETM of IODP Hole 302-4A.

Similar content being viewed by others

References

  1. Zachos, J. C. et al. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science 302, 1151–1154 (2003)

    Article  Google Scholar 

  2. Kennett, J. P. & Stott, L. D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353, 225–229 (1991)

    Article  ADS  Google Scholar 

  3. Tripati, A. & Elderfield, H. Deep-sea temperature and circulation changes at the Paleocene-Eocene thermal maximum. Science 308, 1894–1898 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

    Article  ADS  Google Scholar 

  5. Backman, J., Moran, K., McInroy, D. B., Mayer, L. A. & the Expedition 302 Scientists. Arctic Coring Expedition (ACEX). Proc. ODP 302 I/doi:10.2204/iodp.proc.302.2006 (Integrated Ocean Drilling Program Management International, College Station, Texas, 2006)

    Google Scholar 

  6. Shellito, C. J., Sloan, L. C. & Huber, M. Climate model sensitivity to atmospheric CO2 levels in the Early-Middle Paleogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 113–123 (2003)

    Article  Google Scholar 

  7. Sloan, L. C. & Pollard, D. Polar stratospheric clouds: A high latitude warming mechanism in an ancient greenhouse world. Geophys. Res. Lett. 25, 3517–3520 (1998)

    Article  ADS  Google Scholar 

  8. Emanuel, K., DesAutels, C., Holloway, C. & Korty, R. Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci. 61, 843–858 (2004)

    Article  ADS  Google Scholar 

  9. Koch, P. L., Zachos, J. C. & Gingerich, P. D. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319–322 (1992)

    Article  ADS  CAS  Google Scholar 

  10. Röhl, U., Bralower, T. J., Norris, G. & Wefer, G. A new chronology for the late Paleocene thermal maximum and its environmental implications. Geology 28, 927–930 (2000)

    Article  ADS  Google Scholar 

  11. Crouch, E. M. et al. Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology 29, 315–318 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Thomas, E. & Shackleton, N. J. in Correlation of the Early Paleogene in Northwestern Europe (eds Knox, R. W. O. B., Corfield, R. M. & Dunay, R. E.) 401–441 (Geological Society of London Special Publication 101, 1996)

    Google Scholar 

  13. Wing, S. L. in Late Paleocene–early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records (eds Aubry, M.-P., Lucas, S. G. & Berggren, W. A.) 380–400 (Columbia Univ. Press, New York, 1998)

    Google Scholar 

  14. Bowen, G. J. et al. Mammalian dispersal at the Paleocene/Eocene boundary. Science 295, 2062–2065 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Bujak, J. P. & Brinkhuis, H. in Late Paleocene–early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records (eds Aubry, M.-P., Lucas, S. G. & Berggren, W. A.) 277–295 (Columbia Univ. Press, New York, 1998)

    Google Scholar 

  16. Pagani, M. et al. Arctic's hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature (submitted)

  17. Steurbaut, E. et al. in Causes and Consequences of Globally Warm Climates in the Early Paleogene (eds Wing, S. L., Gingerich, P., Schmitz, B. & Thomas, E.) 291–317 (Geological Society of America Special Paper 369, Boulder, Colorado, 2003)

    Book  Google Scholar 

  18. Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Wuchter, C., Schouten, S., Coolen, M. J. L. & Sinninghe Damsté, J. S. Temperature-dependent variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: Implications for TEX86 paleothermometry. Paleoceanography 19, doi:10.1029/2004PA001041 (2004)

  20. Markwick, P. J. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: Implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 137, 205–271 (1998)

    Article  Google Scholar 

  21. Tripati, A., Zachos, J., Marincovich, L. Jr & Bice, K. Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios. Palaeogeogr. Palaeoclimatol. Palaeoecol. 170, 101–113 (2001)

    Article  Google Scholar 

  22. Jenkyns, H. C., Forster, A., Schouten, S. & Sinninghe Damsté, J. S. High temperatures in the Late Cretaceous Arctic Ocean. Nature 432, 888–892 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Fricke, H. C. & Wing, S. L. Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene. Am. J. Sci. 304, 612–635 (2004)

    Article  ADS  Google Scholar 

  24. Brinkhuis, H. et al. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature doi:10.1038/nature04692 (this issue)

  25. Sluijs, A., Pross, J. & Brinkhuis, H. From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth Sci. Rev. 68, 281–315 (2005)

    Article  ADS  Google Scholar 

  26. Hopmans, E. C. et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224, 107–116 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Speijer, R. P. & Morsi, A.-M. M. Ostracode turnover and sea-level changes associated with the Paleocene-Eocene thermal maximum. Geology 30, 23–26 (2002)

    Article  ADS  Google Scholar 

  28. Sinninghe-Damsté, J. S., Wakeham, S. G., Kohnen, M. E. L., Hayes, J. M. & De Leeuw, J. W. A 6,000-year sedimentary molecular record of chemocline excursions in the Black Sea. Nature 362, 827–829 (1993)

    Article  ADS  Google Scholar 

  29. Huber, M., Sloan, L. C. & Shellito, C. J. in Causes and Consequences of Globally Warm Climates in the Early Palaeogene (eds Wing, S. L., Gingerich, P. D., Schmitz, B. & Thomas, E.) 25–47 (Geological Society of America Special Paper 369, Boulder, Colorado, 2003)

    Google Scholar 

  30. Caballero, R. & Langen, P. L. The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett. 32, doi: 10.1029/2004GL021581 (2005)

Download references

Acknowledgements

A.S. thanks the Utrecht Biogeology Centre for funding. H.B. thanks the Netherlands Organization for Scientific Research, and Utrecht University for enabling participation in the ACEX expedition. M.H. thanks the Purdue Climate Change Research Center, ITaP and the Purdue Research Foundation for their continued support. This research used samples and data provided by the IODP. We thank L. Bik, J. van Tongeren, N. Welters and A. van Dijk for technical support, and C. E. Stickley for discussions. Author Contributions A.S. and H.B. carried out the palynology, A.S. & G.-J.R. the δ13CTOC, S.S., M.W. and J.S.S.D. the TEX86′, BIT and isorenieratane analyses. R.S. generated the hydrogen index data. J.B. and K.M. were the co-chiefs of the ACEX expedition. N.P., J.M and the Expedition 302 Scientists were involved in generating shipboard and shore-based ACEX data. A.S., S.S., M.P., H.B., J.S.S.D., G.R.D., M.H. and L.J.L. contributed to interpreting the data and writing the paper.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Appy Sluijs or Stefan Schouten.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Additional information

A list of authors and affiliations appears at the end of the paper

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Discussion, Supplementary Figures 1–3, Supplementary Table 1 and additional references. (PDF 3004 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sluijs, A., Schouten, S., Pagani, M. et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 441, 610–613 (2006). https://doi.org/10.1038/nature04668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04668

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing