Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An intense stratospheric jet on Jupiter

Abstract

The Earth's equatorial stratosphere shows oscillations in which the east–west winds reverse direction and the temperatures change cyclically with a period of about two years1,2. This phenomenon, called the quasi-biennial oscillation, also affects the dynamics of the mid- and high-latitude stratosphere and weather in the lower atmosphere2. Ground-based observations have suggested3,4,5 that similar temperature oscillations (with a 4–5-yr cycle) occur on Jupiter, but these data suffer from poor vertical resolution and Jupiter's stratospheric wind velocities have not yet been determined. Here we report maps of temperatures and winds with high spatial resolution, obtained from spacecraft measurements of infrared spectra of Jupiter's stratosphere. We find an intense, high-altitude equatorial jet with a speed of 140 m s-1, whose spatial structure resembles that of a quasi-quadrennial oscillation. Wave activity in the stratosphere also appears analogous to that occurring on Earth. A strong interaction between Jupiter and its plasma environment produces hot spots in its upper atmosphere and stratosphere near its poles6,7,8,9, and the temperature maps define the penetration of the hot spots into the stratosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperatures and winds above Jupiter's clouds show the high-altitude stratospheric jet at the equator.
Figure 2: Maps illustrating the motions of thermal features at two levels in Jupiter's atmosphere.
Figure 3: North-polar projection of temperatures shows a hot spot high in the stratosphere.

Similar content being viewed by others

References

  1. Andrews, D. G., Holton, J. R. & Leovy, C. B. Middle Atmosphere Dynamics (Academic, New York, 1987)

    Google Scholar 

  2. Baldwin, M. P. et al. The Quasi-Biennial Oscillation. Rev. Geophys. 39, 179–229 (2001)

    Article  ADS  Google Scholar 

  3. Orton, G. S. et al. Thermal maps of Jupiter: Spatial organization and time dependence of stratospheric temperatures, 1980 to 1990. Science 252, 537–542 (1991)

    Article  ADS  CAS  Google Scholar 

  4. Leovy, C. B., Friedson, A. J. & Orton, G. S. The quasiquadrennial oscillation of Jupiter's equatorial stratosphere. Nature 354, 380–382 (1991)

    Article  ADS  Google Scholar 

  5. Friedson, A. J. New observations and modeling of a QBO-like oscillation in Jupiter's stratosphere. Icarus 137, 34–55 (1999)

    Article  ADS  Google Scholar 

  6. Caldwell, J., Tokunaga, A. T. & Gillett, F. C. Possible infrared aurorae on Jupiter. Icarus 44, 667–675 (1980)

    Article  ADS  Google Scholar 

  7. Caldwell, J. J., Halthore, R., Orton, G. & Bergstralh, J. Infrared polar brightenings on Jupiter. 4. Spatial properties of methane emission. Icarus 74, 331–339 (1988)

    Article  ADS  CAS  Google Scholar 

  8. Drossart, P. et al. Thermal profiles in the auroral regions of Jupiter. J. Geophys. Res. 98, 18803–18811 (1993)

    Article  ADS  Google Scholar 

  9. Gladstone, G. R. et al. A pulsating auroral X-ray hot spot on Jupiter. Nature 415, 1000–1003 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Smith, B. A. et al. The Galilean satellites and Jupiter: Voyager 2 imaging science results. Science 206, 927–950 (1979)

    Article  ADS  CAS  Google Scholar 

  11. Limaye, S. S. Jupiter: New estimates of the mean zonal flow at the cloud level. Icarus 65, 335–352 (1986)

    Article  ADS  Google Scholar 

  12. Simon, A. A. The structure and temporal stability of Jupiter's zonal winds: A study of the north tropical region. Icarus 141, 29–39 (1999)

    Article  ADS  Google Scholar 

  13. Porco, C. C. et al. Cassini imaging of Jupiter's atmosphere, satellites, and rings. Science 299, 1541–1547 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Holton, J. R. An Introduction to Dynamic Meteorology 3rd edn (Academic, New York, 1992)

    Google Scholar 

  15. Kunde, V. G. et al. Cassini infrared Fourier spectroscopic investigation. Proc. SPIE 2803, 162–177 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Gierasch, P. J., Conrath, B. J. & Magalhães, J. A. Zonal mean properties of Jupiter's upper troposphere from Voyager infrared observations. Icarus 67, 456–483 (1986)

    Article  ADS  CAS  Google Scholar 

  17. Li, X. & Read, P. L. A mechanistic model of the quasi-quadrennial oscillation in Jupiter's stratosphere. Planet. Space Sci. 48, 637–669 (2000)

    Article  ADS  Google Scholar 

  18. Magalhães, J. A. et al. Zonal motion and structure in Jupiter's upper troposphere from Voyager infrared and imaging observations. Icarus 89, 39–72 (1990)

    Article  ADS  Google Scholar 

  19. Achterberg, R. K. & Flasar, F. M. Planetary-scale thermal waves in Saturn's upper troposphere. Icarus 119, 350–369 (1996)

    Article  ADS  Google Scholar 

  20. Deming, D. et al. A search for p-mode oscillations of Jupiter: Serendipitous observations of nonacoustic thermal wave structure. Astrophys. J. 343, 456–467 (1989)

    Article  ADS  Google Scholar 

  21. Deming, D. et al. Observations and analysis of longitudinal thermal waves on Jupiter. Icarus 126, 301–312 (1997)

    Article  ADS  Google Scholar 

  22. Orton, G. S. et al. Spatial organization and time dependence of Jupiter's tropospheric temperatures 1980–1993. Science 265, 625–631 (1994)

    Article  ADS  CAS  Google Scholar 

  23. Pallier, L. & Prangé, R. More about the structure of the high latitude Jovian aurorae. Planet. Space Sci. 49, 1159–1173 (2001)

    Article  ADS  Google Scholar 

  24. Waite, J. H. et al. An auroral flare at Jupiter. Nature 410, 787–789 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Beebe, R. Jupiter (Smithsonian Institution Press, Washington, 1994)

    Google Scholar 

  26. Seidelmann, P. K. et al. Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites: 2000. Celest. Mech. Dynam. Astron. 82, 83–110 (2002)

    Article  ADS  Google Scholar 

  27. Conrath, B. J., Gierasch, P. J. & Ustinov, E. A. Thermal structure and para hydrogen on the outer planets from Voyager IRIS measurements. Icarus 135, 501–517 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Riddle, A. C. & Warwick, J. W. Redefinition of System III longitude. Icarus 27, 457–459 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The contributions of T.F. to this work were made while he was at AOP, Oxford University. We thank M. H. Elliott, J. S. Tingley, F. Carroll and M. E. Segura for assistance with instrument commanding and data processing; P. J. Schinder for computing the pointing geometry files for the CIRS observations during the Jupiter swing-by; and D. L. Matson for suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Flasar.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flasar, F., Kunde, V., Achterberg, R. et al. An intense stratospheric jet on Jupiter. Nature 427, 132–135 (2004). https://doi.org/10.1038/nature02142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02142

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing