Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The origin of the anomalous superconducting properties of MgB2

Abstract

Magnesium diboride1 differs from ordinary metallic superconductors in several important ways, including the failure of conventional models2 to predict accurately its unusually high transition temperature, the effects of isotope substitution on the critical transition temperature, and its anomalous specific heat3,4,5. A detailed examination of the energy associated with the formation of charge-carrying pairs, referred to as the ‘superconducting energy gap’, should clarify why MgB2 is different. Some early experimental studies have indicated that MgB2 has multiple gaps3,4,5,6,7,8,9, but past theoretical studies10,11,12,13,14,15,16 have not explained from first principles the origin of these gaps and their effects. Here we report an ab initio calculation of the superconducting gaps in MgB2 and their effects on measurable quantities. An important feature is that the electronic states dominated by orbitals in the boron plane couple strongly to specific phonon modes, making pair formation favourable. This explains the high transition temperature, the anomalous structure in the specific heat, and the existence of multiple gaps in this material. Our analysis suggests comparable or higher transition temperatures may result in layered materials based on B, C and N with partially filled planar orbitals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of MgB2, electronic states at the Fermi level, and a vibrational mode of boron atoms.
Figure 2: The superconducting energy gap of MgB2.
Figure 3: Calculated temperature dependence of the superconducting gaps and the quasiparticle density of states.
Figure 4: The specific heat of MgB2.

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001)

    Article  CAS  Google Scholar 

  2. Hinks, D. G., Claus, H. & Jorgensen, J. D. The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect. Nature 411, 457–460 (2001)

    Article  CAS  Google Scholar 

  3. Wang, Y., Plackowski, T. & Junod, A. Specific heat in the superconducting and normal state (2-300 K, 0-16 T), and magnetic susceptibility of the 38 K superconductor MgB2 . Physica C 355, 179–193 (2001)

    Article  CAS  Google Scholar 

  4. Bouquet, F., Fisher, R. A., Phillips, N. E., Hinks, D. G. & Jorgensen, J. D. Specific heat of Mg11B2: evidence for a second energy gap. Phys. Rev. Lett. 87, 047001-1–047001-4 (2001)

    Article  Google Scholar 

  5. Yang, H. D. et al. Order parameter of MgB2: a fully gapped superconductor. Phys. Rev. Lett. 87, 167003-1–167003-4 (2001)

    Google Scholar 

  6. Szabo, P. et al. Evidence for two superconducting energy gaps in MgB2 by point-contact spectroscopy. Phys. Rev. Lett. 87, 137005-1–137005-4 (2001)

    Article  Google Scholar 

  7. Giubileo, F. et al. Two-gap state density in MgB2: a true bulk property or a proximity effect? Phys. Rev. Lett. 87, 177008-1–177008-4 (2001)

    Article  Google Scholar 

  8. Chen, X. K., Konstantinovi, M. J., Irwin, J. C., Lawrie, D. D. & Franck, J. P. Evidence for two superconducting gaps in MgB2 . Phys. Rev. Lett. 87, 157002-1–157002-4 (2001)

    Google Scholar 

  9. Tsuda, S. et al. Evidence for a multiple superconducting gap in MgB2 from high-resolution photoemission spectroscopy. Phys. Rev. Lett. 87, 177006-1–177006-4 (2001)

    Article  Google Scholar 

  10. Kortus, J., Mazin, I. I., Belashchenko, K. D., Antropov, V. P. & Boyer, L. L. Superconductivity of metallic boron in MgB2 . Phys. Rev. Lett. 86, 4656–4659 (2001)

    Article  CAS  Google Scholar 

  11. An, J. M. & Pickett, W. E. Superconductivity of MgB2: covalent bonds driven metallic. Phys. Rev. Lett. 86, 4366–4369 (2001)

    Article  CAS  Google Scholar 

  12. Bohnen, K.-P., Heid, R. & Renker, B. Phonon dispersion and electron-phonon coupling in MgB2 and AlB2 . Phys. Rev. Lett. 86, 5771–5774 (2001)

    Article  CAS  Google Scholar 

  13. Yildirim, T. et al. Giant anharmonicity and nonlinear electron-phonon coupling in MgB2: a combined first-principles calculation and neutron scattering study. Phys. Rev. Lett. 87, 037001-1–037001-4 (2001)

    Article  Google Scholar 

  14. Liu, A. Y., Mazin, I. I. & Kortus, J. Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps. Phys. Rev. Lett. 87, 087005-1–087005-4 (2001)

    Google Scholar 

  15. Kong, Y., Dolgov, O. V., Jepsen, O. & Andersen, O. K. Electron-phonon interaction in the normal and superconducting states of MgB2 . Phys. Rev. B 64, 020501-1–020501-4 (2001)

    Article  Google Scholar 

  16. Choi, H. J., Roundy, D., Sun, H., Cohen, M. L. & Louie, S. G. First-principles calculation of the superconducting transition in MgB2 within the anisotropic Eliashberg formalism. Phys. Rev. B 66, 020513-1–020513-4 (2002)

    Google Scholar 

  17. Eliashberg, G. M. Interactions between electrons and lattice vibrations in a superconductor. Zh. Eksp. Teor. Fiz. 38, 966–976 (1960); Sov. Phys. JETP 11, 696–702 (1960).

  18. Allen, P. B. & Mitrović, B. in Solid State Physics (eds Ehrenreich, H., Seitz, F. & Turnbull, D.) Vol. 37 1–92 (Academic, New York, 1982)

    Google Scholar 

  19. Carbotte, J. P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990)

    Article  CAS  Google Scholar 

  20. Marsiglio, F., Schossmann, M. & Carbotte, J. P. Iterative analytic continuation of the electron self-energy to the real axis. Phys. Rev. B 37, 4965–4969 (1988)

    Article  CAS  Google Scholar 

  21. Karapetrov, G., Iavarone, M., Kwok, W. K., Crabtree, G. W. & Hinks, D. G. Scanning tunneling spectroscopy in MgB2 . Phys. Rev. Lett. 86, 4374–4377 (2001)

    Article  CAS  Google Scholar 

  22. Sharoni, A., Felner, I. & Millo, O. Tunneling spectroscopy and magnetization measurements of the superconducting properties of MgB2 . Phys. Rev. B 63, 220508-1–220508-4 (2001)

    Article  Google Scholar 

  23. Rubio-Bollinger, G., Suderow, H. & Vieira, S. Tunneling spectroscopy in small grains of superconducting MgB2 . Phys. Rev. Lett. 86, 5582–5584 (2001)

    Article  CAS  Google Scholar 

  24. Schmidt, H., Zasadzinski, J. F., Gray, K. E. & Hinks, D. G. Energy gap from tunneling and metallic contacts onto MgB2: possible evidence for a weakened surface layer. Phys. Rev. B 63, 220504-1–220504-4 (2001)

    Google Scholar 

  25. Takahashi, T., Sato, T., Souma, S., Muranaka, T. & Akimitsu, J. High-resolution photoemission study of MgB2 . Phys. Rev. Lett. 86, 4915–4917 (2001)

    Article  CAS  Google Scholar 

  26. Buzea, C. & Yamashita, T. Review of superconducting properties of MgB2 . Supercond. Sci. Technol. 14, R115–R146 (2001)

    Article  CAS  Google Scholar 

  27. Suhl, H., Matthias, B. T. & Walker, L. R. Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett. 3, 552–554 (1959)

    Article  CAS  Google Scholar 

  28. Bardeen, J. & Stephen, M. Free-energy difference between normal and superconducting states. Phys. Rev. A 136, 1485–1487 (1964)

    Article  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation and by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy. Computational resources have been provided by the National Science Foundation at the National Center for Supercomputing Applications and by the National Energy Research Scientific Computing Center. H. S. acknowledges financial support from the Berkeley Scholar Program funded by the Tang Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Louie.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Roundy, D., Sun, H. et al. The origin of the anomalous superconducting properties of MgB2. Nature 418, 758–760 (2002). https://doi.org/10.1038/nature00898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00898

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing