Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensitivities of extant animal taxa to ocean acidification

Abstract

Anthropogenic CO2 emitted to the atmosphere is absorbed by the oceans, causing a progressive increase in ocean inorganic carbon concentrations and resulting in decreased water pH and calcium carbonate saturation. This phenomenon, called ocean acidification, is in addition to the warming effects of CO2 emissions. Ocean acidification has been reported to affect ocean biota, but the severity of this threat to ocean ecosystems (and humans depending on these ecosystems) is poorly understood. Here we evaluate the scale of this threat in the context of widely used representative concentration pathways (RCPs) by analysing the sensitivities of five animal taxa (corals, echinoderms, molluscs, crustaceans and fishes) to a wide range of CO2 concentrations. Corals, echinoderms and molluscs are more sensitive to RCP8.5 (936 ppm in 2100) than are crustaceans. Larval fishes may be even more sensitive than the lower invertebrates, but taxon sensitivity on evolutionary timescales remains obscure. The variety of responses within and between taxa, together with observations in mesocosms and palaeo-analogues, suggest that ocean acidification is a driver for substantial change in ocean ecosystems this century, potentially leading to long-term shifts in species composition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic summarizing effects of ocean acidification on animals.
Figure 2: Sensitivities of animal taxa to ocean acidification.
Figure 3: Sensitivities (fractions (%) of species) of corals, echinoderms, molluscs, crustaceans and fishes negatively affected within each p CO 2 range (depicted as Log10 of mean p CO 2 in μatm).

Similar content being viewed by others

References

  1. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    Article  CAS  Google Scholar 

  2. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  3. Feely, R. A., Doney, S. C. & Cooley, S. R. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).

    Article  Google Scholar 

  4. IPCC Special Report on Emissions Scenarios (Cambridge Univ. Press, 2000).

  5. Nicholls, R. J. et al. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) Ch. 6 (Cambridge Univ. Press, 2007).

    Google Scholar 

  6. Pörtner, H. O. Climate-dependent evolution of Antarctic ectotherms: An integrative analysis. Deep-Sea Res. II 53, 1071–1104 (2006).

    Article  Google Scholar 

  7. Pörtner, H. O. Oxygen- and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).

    Article  Google Scholar 

  8. Pörtner, H. O. Integrating climate-related stressor effects on marine organisms: Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog. Ser. 470, 273–290 (2012).

    Article  Google Scholar 

  9. Pörtner, H. O., Langenbuch, M. & Michaelidis, B. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change. J. Geophys. Res. 110, C09S10 (2005).

    Article  Google Scholar 

  10. Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny? Biogeosciences 6, 2313–2331 (2009).

    Article  CAS  Google Scholar 

  11. Widdicombe, S. & Spicer, J. Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us? J. Exp. Mar. Biol. Ecol. 366, 187–197 (2008).

    Article  Google Scholar 

  12. Pörtner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Mar. Ecol. Prog. Ser. 373, 203–217 (2008).

    Article  Google Scholar 

  13. Calosi, P. et al. Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Mar. Pollut. Bull. http://dx.doi.org/10.1016/j.marpolbul.2012.11.040 (2013).

  14. Seibel, B. A. & Walsh, P. J. Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J. Exp. Biol. 206, 641–650 (2003).

    Article  CAS  Google Scholar 

  15. Sinning, A. & Hübner, C. A. Minireview: pH and synaptic transmission. FEBS Lett. 587, 1923–1928 (2013).

    Article  CAS  Google Scholar 

  16. Reipschläger, A., Nilsson, G. E. & Pörtner, H. O. A role for adenosine in metabolic depression in the marine invertebrate Sipunculus nudus. Am. J. Physiol. 272, R350–R356 (1997).

    Article  Google Scholar 

  17. Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Clim. Change 2, 201–204 (2012).

    Article  CAS  Google Scholar 

  18. Hendriks, I. E., Duarte, C. M. & Álvarez, M. Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Estuar. Coast. Shelf Sci. 86, 157–164 (2010).

    Article  CAS  Google Scholar 

  19. Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 9, 1884–1896 (2013).

    Article  Google Scholar 

  20. Dupont, S., Dorey, N. & Throndyke, M. What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar. Coast. Shelf Sci. 89, 182–185 (2010).

    Article  Google Scholar 

  21. Dupont, S., Ortega-Martı´nez, O. & Thorndyke, M. Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19, 449–462 (2010).

    Article  CAS  Google Scholar 

  22. Caldeira, K. et al. in IPCC Carbon Dioxide Capture and Storage (eds Metz, B. et al.) Ch. 6 (Cambridge Univ. Press, 2005).

    Google Scholar 

  23. Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geosci. 3, 196–200 (2010).

    Article  CAS  Google Scholar 

  24. Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    Article  Google Scholar 

  25. Knoll, A., Bambach, R., Payne, J., Pruss, S. & Fischer, W. Paleophysiology and end-Permian mass extinction. Earth Planet Sci. Lett. 256, 295–313 (2007).

    Article  CAS  Google Scholar 

  26. Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011).

    Article  Google Scholar 

  27. Zamagni, J., Mutti, M. & Košir, A. The evolution of mid Paleocene-early Eocene coral communities: How to survive during rapid global warming. Palaeogeogr. Palaeoclimatol. Palaeoecol. 317-318, 48–65 (2012).

    Article  Google Scholar 

  28. Kump, L. R., Bralower, T. J. & Ridgwell, A. Ocean acidification in deep time. Oceanography 22, 94–107 (2009).

    Article  Google Scholar 

  29. Venn, A. A. et al. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc. Natl Acad. Sci. USA 110, 1634–1639 (2013).

    Article  CAS  Google Scholar 

  30. McCulloch, M., Falter, J., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nature Clim. Change 2, 623–627 (2012).

    Article  CAS  Google Scholar 

  31. Miles, H., Widdicombe, S., Spicer, J. I. & Hall-Spencer, J. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar. Pollut. Bull. 54, 89–96 (2007).

    Article  CAS  Google Scholar 

  32. Thomsen, J. et al. Calcifying invertebrates succeed in a naturally CO2 enriched coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7, 3879–3891 (2010).

    Article  CAS  Google Scholar 

  33. Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430, 257–271 (2011).

    Article  CAS  Google Scholar 

  34. Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).

    Article  CAS  Google Scholar 

  35. Bush, A. M. & Bambach, R. K. Paleoecologic megatrends in marine metazoa. Annu. Rev. Earth Pl. Sci. 39, 241–269 (2011).

    Article  CAS  Google Scholar 

  36. Chen, Z-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geosci. 5, 375–383 (2012).

    Article  CAS  Google Scholar 

  37. Little, C. The Terrestrial Invasion: An Ecophysiological Approach to the Origins of Land Animals 304 (Cambridge Univ. Press, 1990).

    Google Scholar 

  38. Hale, R., Calosi, P., McNeill, L., Mieszkowska, N. & Widdicombe, S. Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120, 661–674 (2011).

    Article  Google Scholar 

  39. Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl Acad. Sci. USA 108, 14515–14520 (2011).

    Article  CAS  Google Scholar 

  40. Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).

    Article  CAS  Google Scholar 

  41. Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Clim. Change 1, 165–169 (2011).

    Article  CAS  Google Scholar 

  42. Parker, L. M. et al. Adult exposure influences offspring response to ocean acidification in oysters. Glob. Change Biol. 18, 82–92 (2012).

    Article  Google Scholar 

  43. Miller, G. M., Watson, S-A., Donelson, J. M., McCormick, M. I. & Munday, P. L. Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Clim. Change 2, 858–861 (2012).

    Article  CAS  Google Scholar 

  44. Boyd, P. W. Beyond ocean acidification. Nature Geosci. 4, 273–274 (2011).

    Article  CAS  Google Scholar 

  45. Pörtner, H. O. & Farrell, A. P. Ecology. Physiology and climate change. Science 322, 690–692 (2008).

    Article  Google Scholar 

  46. Speijer, R. P., Scheibner, C., Stassen, P. & Morsi, A-M. M. Response of marine ecosystems to deep-time global warming: A synthesis of biotic patterns across the Paleocene–Eocene Thermal Maximum (PETM). Austrian J. Earth Sci. 105, 6–16 (2012).

    Google Scholar 

  47. Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and late Permian mass extinction. Science 273, 452–457 (1996).

    Article  CAS  Google Scholar 

  48. Pörtner, H. O., Langenbuch, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60, 705–718 (2004).

    Article  Google Scholar 

  49. Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Caldeira for helpful comments on the manuscript. This study was supported by grant no. 01 LG 1005F of the Federal Ministry of Education and Research (BMBF). The authors are liable for the contents of this publication.

Author information

Authors and Affiliations

Authors

Contributions

A.C.W. surveyed the literature and analysed the data accounting for ideas by H-O.P. A.C.W. wrote a first draft of the manuscript, which was subsequently revised by both authors.

Corresponding author

Correspondence to Astrid C. Wittmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittmann, A., Pörtner, HO. Sensitivities of extant animal taxa to ocean acidification. Nature Clim Change 3, 995–1001 (2013). https://doi.org/10.1038/nclimate1982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing