Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Association of serum VEGF levels with prefrontal cortex volume in schizophrenia

Subjects

Abstract

A large body of evidence indicates alterations in brain regional cellular energy metabolism and blood flow in schizophrenia. Among the different molecules regulating blood flow, vascular endothelial growth factor (VEGF) is generally accepted as the major factor involved in the process of angiogenesis. In the present study, we examined whether peripheral VEGF levels correlate with changes in the prefrontal cortex (PFC) volume in patients with schizophrenia and in healthy controls. Whole-blood samples were obtained from 96 people with schizophrenia or schizoaffective disorder and 83 healthy controls. Serum VEGF protein levels were analyzed by enzyme-linked immunosorbent assay, whereas quantitative PCR was performed to measure interleukin-6 (IL-6, a pro-inflammatory marker implicated in schizophrenia) mRNA levels in the blood samples. Structural magnetic resonance imaging scans were obtained using a 3T Achieva scanner on a subset of 59 people with schizophrenia or schizoaffective disorder and 65 healthy controls, and prefrontal volumes were obtained using FreeSurfer software. As compared with healthy controls, individuals with schizophrenia had a significant increase in log-transformed mean serum VEGF levels (t(177)=2.9, P=0.005). A significant inverse correlation (r=−0.40, P=0.002) between serum VEGF and total frontal pole volume was found in patients with schizophrenia/schizoaffective disorder. Moreover, we observed a significant positive association (r=0.24, P=0.03) between serum VEGF and IL-6 mRNA levels in patients with schizophrenia. These findings suggest an association between serum VEGF and inflammation, and that serum VEGF levels are related to structural abnormalities in the PFC of people with schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Wheeler AL, Voineskos AN . A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci 2014; 8: 653.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Honea R, Crow TJ, Passingham D, Mackay CE . Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 2005; 162: 2233–2245.

    Article  PubMed  Google Scholar 

  3. Shenton ME, Dickey CC, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V . Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry 2011; 68: 128–137.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller D, Andreasen N, O'Leary D, Watkins G, Boles Ponto L, Hichwa R . Comparison of the effects of risperidone and haloperidol on regional cerebral blood flow in schizophrenia. Biol Psychiatry 2001; 49: 704–715.

    Article  CAS  PubMed  Google Scholar 

  6. Bartlett EJ, Brodie JD, Simkowitz P, Schlösser R, Dewey SL, Lindenmayer JP et al. Effect of a haloperidol challenge on regional brain metabolism in neuroleptic-responsive and nonresponsive schizophrenic patients. Am J Psychiatry 1998; 155: 337–343.

    Article  CAS  PubMed  Google Scholar 

  7. Andreasen N, O'Leary D, Flaum M, Nopoulos P, Watkins G, Ponto L et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet 1997; 349: 1730–1734.

    Article  CAS  PubMed  Google Scholar 

  8. Wiser AK, Andreasen NC, O'Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD . Dysfunctional cortico-cerebellar circuits cause ‘cognitive dysmetria’ in schizophrenia. Neuroreport 1998; 9: 1895–1899.

    Article  CAS  PubMed  Google Scholar 

  9. Dirnberger G, Fuller R, Frith C, Jahanshahi M . Neural correlates of executive dysfunction in schizophrenia: failure to modulate brain activity with task demands. Neuroreport 2014; 25: 1308–1315.

    Article  CAS  PubMed  Google Scholar 

  10. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA . Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56: 549–580.

    Article  CAS  PubMed  Google Scholar 

  11. Lacoste B, Comin CH, Ben-Zvi A, Kaeser PS, Xu X, Costa Lda F et al. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron 2014; 83: 1117–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harder D, Zhang C, Gebremedhin D . Astrocytes function in matching blood flow to metabolic activity. News Physiol Sci 2002; 17: 27–31.

    CAS  PubMed  Google Scholar 

  13. Williamson P . Hypofrontality in schizophrenia: a review of the evidence. Can J Psychiatry 1987; 32: 399–404.

    Article  CAS  PubMed  Google Scholar 

  14. Marti HM, Risau W . Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA 1998; 95: 15809–15814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P . Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 2009; 89: 607–648.

    Article  CAS  PubMed  Google Scholar 

  16. Bengoetxea H, Argandoña EG, Lafuente JV . Effects of visual experience on vascular endothelial growth factor expression during the postnatal development of the rat visual cortex. Cereb Cortex 2008; 18: 1630–1639.

    Article  PubMed  Google Scholar 

  17. Pillai A, Mahadik SP . Differential effects of haloperidol and olanzapine on levels of vascular endothelial growth factor and angiogenesis in rat hippocampus. Schizophr Res 2006; 87: 48–59.

    Article  PubMed  Google Scholar 

  18. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L . VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006; 7: 359–371.

    Article  CAS  PubMed  Google Scholar 

  19. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376: 62–66.

    Article  CAS  PubMed  Google Scholar 

  20. Storkebaum E, Carmeliet P . VEGF: a critical player in neurodegeneration. J Clin Invest 2004; 113: 14–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA . Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 2002; 99: 11946–11950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khaibullina AA, Rosenstein JM, Krum JM . Vascular endothelial growth factor promotes neurite maturation in primary CNS neuronal cultures. Brain Res 2004; 148: 59–68.

    Article  CAS  Google Scholar 

  23. Rosenstein JM, Mani N, Khaibullina A, Krum JM . Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J Neurosci 2003; 23: 11036–11044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fulzele S, Pillai A . Decreased VEGF mRNA expression in the dorsolateral prefrontal cortex of schizophrenia subjects. Schizophr Res 2009; 115: 372–373.

    Article  PubMed  Google Scholar 

  25. Blumberg HP, Wang F, Chepenik LG, Kalmar JH, Edmiston E, Duman RS et al. Influence of vascular endothelial growth factor variation on human hippocampus morphology. Biol Psychiatry 2008; 64: 901–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Flynn SW, Lang DJ, Mackay AL, Goghari V, Vavasour IM, Whittall KP et al. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 2003; 8: 811–820.

    Article  CAS  PubMed  Google Scholar 

  27. Asami T, Bouix S, Whitford TJ, Shenton ME, Salisbury DF, McCarley RW . Longitudinal loss of gray matter volume in patients with first-episode schizophrenia: DARTEL automated analysis and ROI validation. Neuroimage 2012; 59: 986–996.

    Article  PubMed  Google Scholar 

  28. Yang Y, Fung SJ, Rothwell A, Tianmei S, Weickert CS . Increased interstitial white matter neuron density in the dorsolateral prefrontal cortex of people with schizophrenia. Biol Psychiatry 2011; 69: 63–70.

    Article  PubMed  Google Scholar 

  29. Joshi D, Fung SJ, Rothwell A, Weickert CS . Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia. Biol Psychiatry 2012; 72: 725–733.

    Article  CAS  PubMed  Google Scholar 

  30. Volk DW, Lewis DA . Early developmental disturbances of cortical inhibitory neurons: contribution to cognitive deficits in schizophrenia. Schizophr Bull 2014; 40: 952–957.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T et al. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 2013; 18: 206–214.

    Article  CAS  PubMed  Google Scholar 

  32. Catts VS, Wong J, Fillman SG, Fung SJ, Weickert CS . Increased expression of astrocyte markers in schizophrenia: association with neuroinflammation. Aust N Z J Psychiatry 2014; 48: 722–734.

    Article  PubMed  Google Scholar 

  33. Bellon A, Krebs MO, Jay TM . Factoring neurotrophins into a neurite-based pathophysiological model of Schizophrenia. Prog Neurobiol 2011; 94: 77–90.

    Article  CAS  PubMed  Google Scholar 

  34. Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC et al. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol 2006; 177: 5574–5584.

    Article  CAS  PubMed  Google Scholar 

  35. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B . Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70: 663–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. First MB, Williams JBW, Spitzer RL, Gibbon M . Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Clinical Trials Version (SCID-CT). Biometrics Research, New York State Psychiatric Institute: New York, 2007.

    Google Scholar 

  37. Kay SR, Fiszbein A, Opler LA . The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13: 261–276.

    Article  CAS  PubMed  Google Scholar 

  38. Wechsler D . Wechsler Adult Intelligence Scale-Third Edition. Psychological Corporation: San Antonio, 1997.

    Google Scholar 

  39. Wechsler D . Wechsler Test of Adult Reading. The Psychological Corporation: San Antonio, 2001.

    Google Scholar 

  40. Wechsler D . Wechsler Memory Scale-Revised. The Psychological Corporation: San Antonio, 1987.

    Google Scholar 

  41. Lezak M . Neuropsychological Assessment 4th (ed). Oxford University Press: New York, 2004.

    Google Scholar 

  42. Moore L, Kyaw M, Vercammen A, Lenroot R, Kulkarni J, Curtis J et al. Serum testosterone levels are related to cognitive function in men with schizophrenia. Psychoneuroendocrinology 2013; 38: 1717–1728.

    Article  CAS  PubMed  Google Scholar 

  43. Weickert CS, Sheedy D, Rothmond DA, Dedova I, Fung S, Garrick T et al. Selection of reference gene expression in a schizophrenia brain cohort. Aust N Z J Psychiatry 2010; 44: 59–70.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  45. Leucht S, Wahlbeck K, Hamann J, Kissling W . New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 2003; 361: 1581–1589.

    Article  CAS  PubMed  Google Scholar 

  46. Woods SW . Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 2003; 64: 663–667.

    Article  CAS  PubMed  Google Scholar 

  47. Goldstein JM, Goodman JM, Seidman LJ, Kennedy DN, Makris N, Lee H et al. Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging. Arch Gen Psychiatry 1999; 56: 537–547.

    Article  CAS  PubMed  Google Scholar 

  48. Buchanan RW, Vladar K, Barta PE, Pearlson GD . Structural evaluation of the prefrontal cortex in schizophrenia. Am J Psychiatry 1998; 155: 1049–1055.

    Article  CAS  PubMed  Google Scholar 

  49. Vita A, De Peri L, Deste G, Sacchetti E . Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry 2012; 2: e190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Squarcina L, Perlini C, Peruzzo D, Castellani U, Marinelli V, Bellani M et al. The use of dynamic susceptibility contrast (DSC) MRI to automatically classify patients with first episode psychosis. Schizophr Res 2015; 165: 38–44.

    Article  PubMed  Google Scholar 

  51. Shifren JL, Doldi N, Ferrara N, Mesiano S, Jaffe RB . In the human fetus, vascular endothelial growth factor is expressed in epithelial cells and myocytes, but not vascular endothelium: implications for mode of action. J Clin Endocrinol Metab 1994; 79: 316–322.

    CAS  PubMed  Google Scholar 

  52. Peters KG, De Vries C, Williams LT . Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci USA 1993; 90: 8915–8919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. He H, Venema VJ, Gu X, Venema RC, Marrero MB, Caldwell RB . Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem 1999; 274: 25130–25135.

    Article  CAS  PubMed  Google Scholar 

  54. Howell KR, Kutiyanawalla A, Pillai A . Long-term continuous corticosterone treatment decreases VEGF receptor-2 expression in frontal cortex. PLoS One 2011; 6: e20198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pasternak O, Westin CF, Bouix S, Seidman LJ, Goldstein JM, Woo TU et al. Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. J Neurosci 2012; 32: 17365–17372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pasternak O, Westin CF, Dahlben B, Bouix S, Kubicki M . The extent of diffusion MRI markers of neuroinflammation and white matter deterioration in chronic schizophrenia. Schizophr Res 2015; 161: 113–118.

    Article  PubMed  Google Scholar 

  57. Xiu MH, Yang GG, Tan YL, Chen da C, Tan SP, Wang ZR et al. Decreased interleukin-10 serum levels in first-episode drug-naïve schizophrenia: Relationship to psychopathology. Schizophr Res 2014; 156: 9–14.

    Article  PubMed  Google Scholar 

  58. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ . Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996; 271: 736–741.

    Article  CAS  PubMed  Google Scholar 

  59. Meyer U . Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol Psychiatry 2014; 75: 307–315.

    Article  CAS  PubMed  Google Scholar 

  60. Horváth S, Mirnics K . Immune system disturbances in schizophrenia. Biol Psychiatry 2014; 75: 316–323.

    Article  PubMed  Google Scholar 

  61. Arrode-Brusés G, Brusés JL . Maternal immune activation by poly I:C induces expression of cytokines IL-1β and IL-13, chemokine MCP-1 and colony stimulating factor VEGF in fetal mouse brain. J Neuroinflammation 2012; 9: 83.

    Article  PubMed  Google Scholar 

  62. Khan D, Fernando P, Cicvaric A, Berger A, Pollak A, Monje FJ et al. Long-term effects of maternal immune activation on depression-like behavior in the mouse. Transl Psychiatry 2014; 4: e363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Haren NE, Hulshoff Pol HE, Schnack HG, Cahn W, Mandl RC, Collins DL et al. Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. Neuropsychopharmacology 2007; 32: 2057–2066.

    Article  PubMed  Google Scholar 

  64. Keilhoff G, Grecksch G, Bernstein HG, Roskoden T, Becker A . Risperidone and haloperidol promote survival of stem cells in the rat hippocampus. Eur Arch Psychiatry Clin Neurosci 2010; 260: 151–162.

    Article  PubMed  Google Scholar 

  65. Misztal-Dethloff B, Stepień H, Komorowski J . Effect of diazepam and chlorpromazine on proliferative activity and vascular endothelial growth factor (VEGF) secretion from cultured endothelial HECa10 cells in vitro. Pharmacol Rep 2005; 57: 670–674.

    CAS  PubMed  Google Scholar 

  66. Di Nicola M, Cattaneo A, Hepgul N, Di Forti M, Aitchison KJ, Janiri L et al. Serum and gene expression profile of cytokines in first-episode psychosis. Brain Behav Immun 2013; 31: 90–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murphy BP, Pang TY, Hannan AJ, Proffitt TM, McConchie M, Kerr M et al. Vascular endothelial growth factor and brain-derived neurotrophic factor in quetiapine treated first-episode psychosis. Schizophr Res Treatment 2014; 2014: 719395.

    PubMed  PubMed Central  Google Scholar 

  68. Ferrara N, Gerber HP, LeCouter J . The biology of VEGF and its receptors. Nat Med 2003; 9: 669–676.

    Article  CAS  PubMed  Google Scholar 

  69. Morita S, Ukai S, Miyata S . VEGF-dependent continuous angiogenesis in the median eminence of adult mice. Eur J Neurosci 2013; 37: 508–518.

    Article  CAS  PubMed  Google Scholar 

  70. Ozawa K, Kondo T, Hori O, Kitao Y, Stern DM, Eisenmenger W et al. Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J Clin Invest 2001; 108: 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kerr BA, Byzova TV . alphaB-crystallin: a novel VEGF chaperone. Blood 2010; 115: 3181–3183.

    Article  CAS  PubMed  Google Scholar 

  72. Yeo TK, Senger DR, Dvorak HF, Freter L, Yeo KT . Glycosylation is essential for efficient secretion but not for permeability-enhancing activity of vascular-permeability factor (vascular endothelial growth-factor). Biochem Biophys Res Commun 1991; 179: 1568–1575.

    Article  CAS  PubMed  Google Scholar 

  73. Perlstein WM, Carter CS, Noll DC, Cohen JD . Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry 2001; 158: 1105–1113.

    Article  CAS  PubMed  Google Scholar 

  74. Kikinis Z, Fallon JH, Niznikiewicz M, Nestor P, Davidson C, Bobrow L et al. Gray matter volume reduction in rostral middle frontal gyrus in patients with chronic schizophrenia. Schizophr Res 2010; 123: 153–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weickert TW, Goldberg TE, Gold JM, Bigelow LB, Egan MF, Weinberger DR . Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 2000; 57: 907–913.

    Article  CAS  PubMed  Google Scholar 

  76. Wongupparaj P, Kumari V, Morris RG . Executive function processes mediate the impact of working memory impairment on intelligence in schizophrenia. Eur Psychiatry 2015; 30: 1–7.

    Article  CAS  PubMed  Google Scholar 

  77. Halmai Z, Dome P, Dobos J, Gonda X, Szekely A, Sasvari-Szekely M et al. Peripheral vascular endothelial growth factor level is associated with antidepressant treatment response: results of a preliminary study. J Affect Disord 2013; 144: 269–273.

    Article  CAS  PubMed  Google Scholar 

  78. Ahmed AO, Bhat IA . Psychopharmacological treatment of neurocognitive deficits in people with schizophrenia: a review of old and new targets. CNS Drugs 2014; 28: 301–318.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Loretta Moore, Nick Vella, Merribel Kyaw, Selena Hu, Alice Rothwell, Richard Morris, Ryan Balzan and Beverly Hisee for screening participants, performing cognitive and symptom assessments, data entry, management and monitoring. This work was supported by the University of New South Wales, the National Health and Medical Research Council (NHMRC) of Australia Project grant number 568807, Neuroscience Research Australia, the Schizophrenia Research Institute utilizing infrastructure funding from the NSW Ministry of Health and the Macquarie Group Foundation and the Australian Schizophrenia Research Bank, which is supported by the NHMRC of Australia, the Pratt Foundation, Ramsay Health Care and the Viertel Charitable Foundation. CSW is a recipient of a National Health and Medical Research Council (Australia) Senior Research Fellowship (1021970). AP acknowledges the Department of Psychiatry and Health Behavior, Georgia Regents University for financial support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Pillai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, A., Howell, K., Ahmed, A. et al. Association of serum VEGF levels with prefrontal cortex volume in schizophrenia. Mol Psychiatry 21, 686–692 (2016). https://doi.org/10.1038/mp.2015.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.96

This article is cited by

Search

Quick links