Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing

Abstract

Schizophrenia (SZ) is a complex disease characterized by impaired neuronal functioning. Although defective alternative splicing has been linked to SZ, the molecular mechanisms responsible are unknown. Additionally, there is limited understanding of the early transcriptomic responses to neuronal activation. Here, we profile these transcriptomic responses and show that long non-coding RNAs (lncRNAs) are dynamically regulated by neuronal activation, including acute downregulation of the lncRNA Gomafu, previously implicated in brain and retinal development. Moreover, we demonstrate that Gomafu binds directly to the splicing factors QKI and SRSF1 (serine/arginine-rich splicing factor 1) and dysregulation of Gomafu leads to alternative splicing patterns that resemble those observed in SZ for the archetypal SZ-associated genes DISC1 and ERBB4. Finally, we show that Gomafu is downregulated in post-mortem cortical gray matter from the superior temporal gyrus in SZ. These results functionally link activity-regulated lncRNAs and alternative splicing in neuronal function and suggest that their dysregulation may contribute to neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rossler W, Salize HJ, van Os J, Riecher-Rossler A . Size of burden of schizophrenia and psychotic disorders. Eur Neuropsychopharmacol 2005; 15: 399–409.

    Article  Google Scholar 

  2. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA . A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 2011; 12: 585–601.

    Article  CAS  Google Scholar 

  3. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  Google Scholar 

  4. Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 2011; 43: 860–863.

    Article  CAS  Google Scholar 

  5. Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S et al. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet 2011; 43: 864–868.

    Article  CAS  Google Scholar 

  6. Morikawa T, Manabe T . Aberrant regulation of alternative pre-mRNA splicing in schizophrenia. Neurochem Int 2010; 57: 691–704.

    Article  CAS  Google Scholar 

  7. Nakata K, Lipska BK, Hyde TM, Ye T, Newburn EN, Morita Y et al. DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci USA 2009; 106: 15873–15878.

    Article  CAS  Google Scholar 

  8. Law AJ, Kleinman JE, Weinberger DR, Weickert CS . Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet 2007; 16: 129–141.

    Article  CAS  Google Scholar 

  9. Tsuiji H, Yoshimoto R, Hasegawa Y, Furuno M, Yoshida M, Nakagawa S . Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes Cells 2011; 16: 479–490.

    Article  CAS  Google Scholar 

  10. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007; 316: 1484–1488.

    Article  CAS  Google Scholar 

  11. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22: 1775–1789.

    Article  CAS  Google Scholar 

  12. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A et al. Landscape of transcription in human cells. Nature 2012; 489: 101–108.

    Article  CAS  Google Scholar 

  13. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    Article  CAS  Google Scholar 

  14. Guttman M, Rinn JL . Modular regulatory principles of large non-coding RNAs. Nature 2012; 482: 339–346.

    Article  CAS  Google Scholar 

  15. Wang KC, Chang HY . Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43: 904–914.

    Article  CAS  Google Scholar 

  16. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011; 477: 295–300.

    Article  CAS  Google Scholar 

  17. Wapinski O, Chang HY . Long noncoding RNAs and human disease. Trends Cell Biol 2011; 21: 354–361.

    Article  CAS  Google Scholar 

  18. Chen LL, Carmichael GG . Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 2010; 22: 357–364.

    Article  CAS  Google Scholar 

  19. Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 2006; 51: 1087–1099.

    Article  CAS  Google Scholar 

  20. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP et al. Genomic analysis of mouse retinal development. PLoS Biol 2004; 2: E247.

    Article  Google Scholar 

  21. Rapicavoli NA, Blackshaw S . New meaning in the message: noncoding RNAs and their role in retinal development. Dev Dyn 2009; 238: 2103–2114.

    Article  CAS  Google Scholar 

  22. Rapicavoli NA, Poth EM, Blackshaw S . The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol 2010; 10: 49.

    Article  Google Scholar 

  23. Mercer TR, Qureshi IA, Gokhan S, Dinger ME, Li G, Mattick JS et al. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci 2010; 11: 14.

    Article  Google Scholar 

  24. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS . Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 2008; 105: 716–721.

    Article  CAS  Google Scholar 

  25. Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S . The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci 2007; 120: 2498–2506.

    Article  CAS  Google Scholar 

  26. Albertson DN, Schmidt CJ, Kapatos G, Bannon MJ . Distinctive profiles of gene expression in the human nucleus accumbens associated with cocaine and heroin abuse. Neuropsychopharmacology 2006; 31: 2304–2312.

    Article  CAS  Google Scholar 

  27. Michelhaugh SK, Lipovich L, Blythe J, Jia H, Kapatos G, Bannon MJ . Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J Neurochem 2011; 116: 459–466.

    Article  CAS  Google Scholar 

  28. Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C et al. Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 2004; 47 (Suppl 1): 227–241.

    Article  CAS  Google Scholar 

  29. Takahashi S, Ohtsuki T, Yu SY, Tanabe E, Yara K, Kamioka M et al. Significant linkage to chromosome 22q for exploratory eye movement dysfunction in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003; 123B: 27–32.

    Article  Google Scholar 

  30. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003; 302: 890–893.

    Article  CAS  Google Scholar 

  31. Smyth GK . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3, Article 3.

    Article  Google Scholar 

  32. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A et al. A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007; 23: 2700–2707.

    Article  CAS  Google Scholar 

  33. Smyth GK, Speed T . Normalization of cDNA microarray data. Methods 2003; 31: 265–273.

    Article  CAS  Google Scholar 

  34. Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P et al. Genome-wide analysis of long noncoding RNA stability. Genome Res 2012; 22: 885–898.

    Article  CAS  Google Scholar 

  35. Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A et al. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 2010; 38: W210–W213.

    Article  CAS  Google Scholar 

  36. Wickham H . ggplot2: Elegant Graphics for Data Analysis. Springer: New York, 2009.

    Book  Google Scholar 

  37. Chen H, Boutros PC . VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 2011; 12: 35.

    Article  Google Scholar 

  38. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA . Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2005; 2: 185–190.

    Article  CAS  Google Scholar 

  39. Vetter I . Development and Optimization of FLIPR high throughput calcium assays for ion channels and GPCRs. Adv Exp Med Biol 2012; 740: 45–82.

    Article  CAS  Google Scholar 

  40. Jeong JS, Jiang L, Albino E, Marrero J, Rho HS, Hu J et al. Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics 2012; 11: O111.016253.

    Article  Google Scholar 

  41. Fok V, Mitton-Fry RM, Grech A, Steitz JA . Multiple domains of EBER 1, an Epstein-Barr virus noncoding RNA, recruit human ribosomal protein L22. RNA 2006; 12: 872–882.

    Article  CAS  Google Scholar 

  42. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ et al. Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 2008; 17: 1156–1168.

    Article  CAS  Google Scholar 

  43. Wu JQ, Wang X, Beveridge NJ, Tooney PA, Scott RJ, Carr VJ et al. Transcriptome sequencing revealed significant alteration of cortical promoter usage and splicing in schizophrenia. PLoS ONE 2012; 7: e36351.

    Article  CAS  Google Scholar 

  44. Lyons MR, West AE . Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94: 259–295.

    Article  CAS  Google Scholar 

  45. Bredy TW, Lin Q, Wei W, Baker-Andresen D, Mattick JS . MicroRNA regulation of neural plasticity and memory. Neurobiol Learn Mem 2011; 96: 89–94.

    Article  CAS  Google Scholar 

  46. Siemen H, Colas D, Heller HC, Brustle O, Pera RA . Pumilio-2 function in the mouse nervous system. PLoS ONE 2011; 6: e25932.

    Article  CAS  Google Scholar 

  47. Lahmann I, Fabienke M, Henneberg B, Pabst O, Vauti F, Minge D et al. The hnRNP and cytoskeletal protein raver1 contributes to synaptic plasticity. Exp Cell Res 2008; 314: 1048–1060.

    Article  CAS  Google Scholar 

  48. Kundel M, Jones KJ, Shin CY, Wells DG . Cytoplasmic polyadenylation element-binding protein regulates neurotrophin-3-dependent beta-catenin mRNA translation in developing hippocampal neurons. J Neurosci 2009; 29: 13630–13639.

    Article  CAS  Google Scholar 

  49. Zearfoss NR, Alarcon JM, Trifilieff P, Kandel E, Richter JD . A molecular circuit composed of CPEB-1 and c-Jun controls growth hormone-mediated synaptic plasticity in the mouse hippocampus. J Neurosci 2008; 28: 8502–8509.

    Article  CAS  Google Scholar 

  50. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25: 1915–1927.

    Article  CAS  Google Scholar 

  51. Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 2005; 25: 247–251.

    Article  CAS  Google Scholar 

  52. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 2010; 29: 3082–3093.

    Article  CAS  Google Scholar 

  53. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 2010; 39: 925–938.

    Article  CAS  Google Scholar 

  54. Aberg K, Saetre P, Jareborg N, Jazin E . Human QKI, a potential regulator of mRNA expression of human oligodendrocyte-related genes involved in schizophrenia. Proc Natl Acad Sci USA 2006; 103: 7482–7487.

    Article  Google Scholar 

  55. Aberg K, Saetre P, Lindholm E, Ekholm B, Pettersson U, Adolfsson R et al. Human QKI, a new candidate gene for schizophrenia involved in myelination. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 84–90.

    Article  Google Scholar 

  56. Haroutunian V, Katsel P, Dracheva S, Davis KL . The human homolog of the QKI gene affected in the severe dysmyelination ‘quaking’ mouse phenotype: downregulated in multiple brain regions in schizophrenia. Am J Psychiatry 2006; 163: 1834–1837.

    Article  Google Scholar 

  57. McCullumsmith RE, Gupta D, Beneyto M, Kreger E, Haroutunian V, Davis KL et al. Expression of transcripts for myelination-related genes in the anterior cingulate cortex in schizophrenia. Schizophr Res 2007; 90: 15–27.

    Article  Google Scholar 

  58. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR . Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2004; 9: 299–307.

    Article  CAS  Google Scholar 

  59. Brandon NJ, Sawa A . Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12: 707–722.

    Article  CAS  Google Scholar 

  60. Ishizuka K, Kamiya A, Oh EC, Kanki H, Seshadri S, Robinson JF et al. DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature 2011; 473: 92–96.

    Article  CAS  Google Scholar 

  61. Wang Q, Charych EI, Pulito VL, Lee JB, Graziane NM, Crozier RA et al. The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol Psychiatry 2011; 16: 1006–1023.

    Article  CAS  Google Scholar 

  62. Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, Dunlop AJ et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci 2010; 13: 327–332.

    Article  CAS  Google Scholar 

  63. Shamir A, Kwon OB, Karavanova I, Vullhorst D, Leiva-Salcedo E, Janssen MJ et al. The importance of the NRG-1/ErbB4 pathway for synaptic plasticity and behaviors associated with psychiatric disorders. J Neurosci 2012; 32: 2988–2997.

    Article  CAS  Google Scholar 

  64. Veikkolainen V, Vaparanta K, Halkilahti K, Iljin K, Sundvall M, Elenius K . Function of ERBB4 is determined by alternative splicing. Cell Cycle 2011; 10: 2647–2657.

    Article  CAS  Google Scholar 

  65. Beveridge NJ, Cairns MJ . MicroRNA dysregulation in schizophrenia. Neurobiol Dis 2012; 46: 263–271.

    Article  CAS  Google Scholar 

  66. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ . Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry 2010; 15: 1176–1189.

    Article  CAS  Google Scholar 

  67. Gardiner E, Beveridge NJ, Wu JQ, Carr V, Scott RJ, Tooney PA et al. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol Psychiatry 2012; 17: 827–840.

    Article  CAS  Google Scholar 

  68. Miller BH, Zeier Z, Xi L, Lanz TA, Deng S, Strathmann J et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci USA 2012; 109: 3125–3130.

    Article  CAS  Google Scholar 

  69. Mercer TR, Dinger ME, Mattick JS . Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155–159.

    Article  CAS  Google Scholar 

  70. Day JJ, Sweatt JD . Epigenetic mechanisms in cognition. Neuron 2011; 70: 813–829.

    Article  CAS  Google Scholar 

  71. Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD et al. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 2011; 147: 773–788.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Post-mortem human tissue was received from the Australian Brain Donor Programs New South Wales (NSW) Tissue Resource Centre, which is supported by The University of Sydney, National Health and Medical Research Council of Australia, Schizophrenia Research Institute, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, and the NSW Department of Health. JSM was supported by an Australia Fellowship grant from the National Health and Medical Research Council (631668) and a Discovery Project grant from the Australian Research Council (DP120100729). NB was supported by NHMRC Project Grant 631057. MC is supported by the Schizophrenia Research Institute and an MC Ainsworth Research Fellowship in Epigenetics. RJT is supported by an Australia Research Council Discovery Early Career Researcher Award. DPV is supported by an ANZ Trustees Scholarship for Medical Research. TB was supported by grants from the National Health and Medical Research Council (APP1023127) and the Australian Research Council (DP1096148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Mattick.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, G., Briggs, J., Vanichkina, D. et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry 19, 486–494 (2014). https://doi.org/10.1038/mp.2013.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.45

Keywords

This article is cited by

Search

Quick links