Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A genome-wide association meta-analysis of plasma Aβ peptides concentrations in the elderly

Abstract

Amyloid beta (Aβ) peptides are the major components of senile plaques, one of the main pathological hallmarks of Alzheimer disease (AD). However, Aβ peptides' functions are not fully understood and seem to be highly pleiotropic. We hypothesized that plasma Aβ peptides concentrations could be a suitable endophenotype for a genome-wide association study (GWAS) designed to (i) identify novel genetic factors involved in amyloid precursor protein metabolism and (ii) highlight relevant Aβ-related physiological and pathophysiological processes. Hence, we performed a genome-wide association meta-analysis of four studies totaling 3 528 healthy individuals of European descent and for whom plasma Aβ1–40 and Aβ1–42 peptides levels had been quantified. Although we did not observe any genome-wide significant locus, we identified 18 suggestive loci (P<1 × 105). Enrichment-pathway analyses revealed canonical pathways mainly involved in neuronal functions, for example, axonal guidance signaling. We also assessed the biological impact of the gene most strongly associated with plasma Aβ1–42 levels (cortexin 3, CTXN3) on APP metabolism in vitro and found that the gene protein was able to modulate Aβ1–42 secretion. In conclusion, our study results suggest that plasma Aβ peptides levels are valid endophenotypes in GWASs and can be used to characterize the metabolism and functions of APP and its metabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. De Strooper B, Annaert W . Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 2000; 113 (Pt 11): 1857–1870.

    CAS  PubMed  Google Scholar 

  2. Yazawa H, Yu ZX, Takeda, Le Y, Gong W, Ferrans V J et al. Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages.FASEB J 2001; 15: 2454–2462.

    Article  CAS  PubMed  Google Scholar 

  3. Maezawa I, Jin L-W, Woltjer RL, Maeda N, Martin GM, Montine TJ, Montine KS . Apolipoprotein E isoforms and apolipoprotein AI protect from amyloid precursor protein carboxy terminal fragment-associated cytotoxicity. J Neurochem 2004; 91: 1312–1321.

    Article  CAS  PubMed  Google Scholar 

  4. Yankner BA, Duffy LK, Kirschner DA . Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 1990; 250: 279–282.

    Article  CAS  PubMed  Google Scholar 

  5. Thomas T, Thomas G, McLendon C, Sutton T, Mullan M . Beta-amyloid-mediated vasoactivity and vascular endothelial damage. Nature 1996; 380: 168–171.

    Article  CAS  PubMed  Google Scholar 

  6. Li QX, Whyte S, Tanner JE, Evin G, Beyreuther K, Masters CL . Secretion of Alzheimer's disease Abeta amyloid peptide by activated human platelets. Lab Invest 1998; 78: 461–469.

    CAS  PubMed  Google Scholar 

  7. Kontush A . Alzheimer’s amyloid-beta as a preventive antioxidant for brain lipoproteins. Cell Mol Neurobiol 2001; 21: 299–315.

    Article  CAS  PubMed  Google Scholar 

  8. Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B et al. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5: e9505.

    Article  PubMed  PubMed Central  Google Scholar 

  9. van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MMB . Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol 2006; 5: 655–660.

    Article  CAS  PubMed  Google Scholar 

  10. Lambert J-C, Schraen-Maschke S, Richard F, Fievet N, Rouaud O, Berr C et al. Association of plasma amyloid beta with risk of dementia: the prospective three-city study. Neurology 2009; 73: 847–853.

    Article  CAS  PubMed  Google Scholar 

  11. Lambert J-C, Dallongeville J, Ellis KA, Schraen-Maschke S, Lui J, Laws S et al. Association of plasma aß peptides with blood pressure in the elderly. PLoS One 2011; 6: e18536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ibrahim-Verbaas CA, Zorkoltseva IV, Amin N, Schuur M, Coppus AMW, Isaacs A et al. Linkage analysis for plasma amyloid beta levels in persons with hypertension implicates Aβ-40 levels to presenilin 2. Hum Genet 2012; 131: 1869–1876.

    Article  CAS  PubMed  Google Scholar 

  13. Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Adamson J, Schaid DJ et al. Heritability of plasma amyloid beta in typical late-onset Alzheimer’s disease pedigrees. Genet Epidemiol 2001; 21: 19–30.

    Article  CAS  PubMed  Google Scholar 

  14. 3C. Study Group. Vascular factors and risk of dementia: design of the three-city study and baseline characteristics of the study population. Neuroepidemiology 2003; 22: 316–325.

    Article  Google Scholar 

  15. Hofman A, van Duijn CM, Franco OH, Ikram MA, Janssen HLA, Klaver CCW et al. The Rotterdam study: 2012 objectives and design update. Eur J Epidemiol 2011; 26: 657–686.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ikram MA, van der Lugt A, Niessen WJ, Krestin GP, Koudstaal PJ, Hofman A . The Rotterdam scan study: design and update up to 2012. Eur J Epidemiol 2011; 26: 811–824.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lopez OL, Kuller LH, Mehta PD, Becker JT, Gach HM, Sweet RA . Plasma amyloid levels and the risk of AD in normal subjects in the cardiovascular health study. Neurology 2008; 70: 1664–1671.

    Article  CAS  PubMed  Google Scholar 

  18. Toledo JB, Vanderstichele H, Figurski M, Aisen PS, Petersen RC, Weiner MW et al. Factors affecting Aβ plasma levels and their utility as biomarkers in ADNI. Acta Neuropathol 2011; 122: 401–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 2009; 41: 1094–1099.

    Article  CAS  PubMed  Google Scholar 

  20. Psaty BM, O’Donnell CJ, Gudnason V, Lunetta KL, Folsom AR, Rotter JI et al. Cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet 2009; 2: 73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Saykin AJ, Shen L, Foroud TM, Potkin SG, Swaminathan S, Kim S et al. Alzheimer's disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimers Dement 2010; 6: 265–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Figurski MJ, Waligórska T, Toledo J, Vanderstichele H, Korecka M, Lee VMY . Alzheimer’s Disease Neuroimaging Initiative. Improved protocol for measurement of plasma β-amyloid in longitudinal evaluation of Alzheimer's Disease Neuroimaging Initiative study patients. Alzheimers Dement 2012; 8: 250–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sergeant N, David J-P, Champain D, Ghestem A, Wattez A, Delacourte A . Progressive decrease of amyloid precursor protein carboxy terminal fragments (APP-CTFs), associated with tau pathology stages, in Alzheimer's disease. J Neurochem 2002; 81: 663–672.

    Article  CAS  PubMed  Google Scholar 

  24. Chapuis J, Hot D, Hansmannel F, Kerdraon O, Ferreira S, Hubans C et al. Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer's disease. Mol Psychiatry 2009; 14: 1004–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2012.

  26. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aulchenko YS, Struchalin MV, Duijn CM . ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 2010; 11: 134.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Willer CJ, Li Y, Abecasis GR . METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010; 26: 2190–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Viechtbauer W . Conducting meta-analyses in R with the metafor package. J Stat Softw 2010; 36: 1–48.

    Article  Google Scholar 

  30. Wang J, Duncan D, Shi Z, Zhang B . WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 2013; 41: W77–W83.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marambaud P, Chevallier N, Ancolio K, Checler F . Post-transcriptional contribution of a cAMP-dependent pathway to the formation of alpha- and beta/gamma-secretases-derived products of beta APP maturation in human cells expressing wild-type and Swedish mutated beta APP. Mol Med 1998; 4: 715–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Su Y, Ryder J, Ni B . Inhibition of Abeta production and APP maturation by a specific PKA inhibitor. FEBS Lett 2003; 546: 407–410.

    Article  CAS  PubMed  Google Scholar 

  33. Lourenço FC, Galvan V, Fombonne J, Corset V, Llambi F, Müller U, Bredesen DE, Mehlen P . Netrin-1 interacts with amyloid precursor protein and regulates amyloid-beta production. Cell Death Differ 2009; 16: 655–663.

    Article  PubMed  Google Scholar 

  34. Rama N, Goldschneider D, Corset V, Lambert J, Pays L, Mehlen P . Amyloid precursor protein regulates netrin-1-mediated commissural axon outgrowth. J Biol Chem 2012; 287: 30014–30023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Y, Tang BL . The amyloid precursor protein and postnatal neurogenesis/neuroregeneration. Biochem Biophys Res Commun 2006; 341: 1–5.

    Article  CAS  PubMed  Google Scholar 

  36. Chasseigneaux S, Allinquant B . Functions of Aβ, sAPPα and sAPPβ: similarities and differences. J Neurochem 2012; 120 (Suppl 1): 99–108.

    Article  CAS  PubMed  Google Scholar 

  37. Lazarov O, Demars MP . All in the family: how the APPs regulate neurogenesis. Front Neurosci 2012; 6: 81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghersi-Egea JF, Gorevic PD, Ghiso J, Frangione B, Patlak CS, Fenstermacher JD . Fate of cerebrospinal fluid-borne amyloid beta-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J Neurochem 1996; 67: 880–883.

    Article  CAS  PubMed  Google Scholar 

  39. Vanderstichele H, Van Kerschaver E, Hesse C, Davidsson P, Buyse MA, Andreasen N et al. Standardization of measurement of beta-amyloid(1-42) in cerebrospinal fluid and plasma. Amyloid 2000; 7: 245–258.

    Article  CAS  PubMed  Google Scholar 

  40. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG . Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J Neurosci 2001; 21: 372–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mehta PD, Pirttila T, Patrick BA, Barshatzky M, Mehta SP . Amyloid beta protein 1-40 and 1-42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neurosci Lett 2001; 304: 102–106.

    Article  CAS  PubMed  Google Scholar 

  42. DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM . Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 2002; 295: 2264–2267.

    CAS  PubMed  Google Scholar 

  43. Giedraitis V, Sundelöf J, Irizarry MC, Gårevik N, Hyman BT, Wahlund L-O et al. The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimer’s disease. Neurosci Lett 2007; 427: 127–131.

    Article  CAS  PubMed  Google Scholar 

  44. Gavín R, Ferrer I, del Río JA . Involvement of Dab1 in APP processing and beta-amyloid deposition in sporadic Creutzfeldt-Jakob patients. Neurobiol Dis 2010; 37: 324–329.

    Article  PubMed  Google Scholar 

  45. Kwon OY, Hwang K, Kim J-A, Kim K, Kwon IC, Song HK et al. Dab1 binds to Fe65 and diminishes the effect of Fe65 or LRP1 on APP processing. J Cell Biochem 2010; 111: 508–519.

    Article  CAS  PubMed  Google Scholar 

  46. Wang HT, Chang JW, Guo Z, Li BG . In silico-initiated cloning and molecular characterization of cortexin 3, a novel human gene specifically expressed in the kidney and brain, and well conserved in vertebrates. Int J Mol Med 2007; 20: 501–510.

    CAS  PubMed  Google Scholar 

  47. Singh TD, Park S-Y, Bae J-S, Yun Y, Bae Y-C, Park R-W et al. MEGF10 functions as a receptor for the uptake of amyloid-β. FEBS Lett 2010; 584: 3936–3942.

    Article  CAS  PubMed  Google Scholar 

  48. Sherva R, Tripodis Y, Bennett DA, Chibnik LB, Crane PK, de Jager PL et al. Genome-wide association study of the rate of cognitive decline in Alzheimer's disease. Alzheimers Dement 2013; 10: 45–52.

    Article  PubMed  Google Scholar 

  49. Ertekin-Taner N, Graff-Radford N, Younkin LH, Eckman C, Baker M, Adamson J et al. Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer's disease pedigrees. Science 2000; 290: 2303–2304.

    Article  CAS  PubMed  Google Scholar 

  50. Ertekin-Taner N, Ronald J, Asahara H, Younkin L, Hella M, Jain S . Fine mapping of the alpha-T catenin gene to a quantitative trait locus on chromosome 10 in late-onset Alzheimer's disease pedigrees. Hum Mol Genet 2003; 12: 3133–3143.

    Article  CAS  PubMed  Google Scholar 

  51. Miyashita A, Arai H, Asada T, Imagawa M, Matsubara E, Shoji M et al. Genetic association of CTNNA3 with late-onset Alzheimer's disease in females. Hum Mol Genet 2007; 16: 2854–2869.

    Article  CAS  PubMed  Google Scholar 

  52. Ertekin-Taner N, Ronald J, Feuk L, Prince J, Tucker M, Younkin L et al. Elevated amyloid beta protein (Abeta42) and late onset Alzheimer's disease are associated with single nucleotide polymorphisms in the urokinase-type plasminogen activator gene. Hum Mol Genet 2005; 14: 447–460.

    Article  CAS  PubMed  Google Scholar 

  53. Papassotiropoulos A, Tsolaki M, Wollmer MA, Molyva D, Thal DR, Huynh K-D et al. No association of a non-synonymous PLAU polymorphism with Alzheimer's disease and disease-related traits. Am J Med Genet B Neuropsychiatr Genet 2005; 132B: 21–23.

    Article  PubMed  Google Scholar 

  54. Ertekin-Taner N, Allen M, Fadale D, Scanlin L, Younkin L, Petersen RC et al. Genetic variants in a haplotype block spanning IDE are significantly associated with plasma Abeta42 levels and risk for Alzheimer disease. Hum Mutat 2004; 23: 334–342.

    Article  CAS  PubMed  Google Scholar 

  55. Carrasquillo MM, Belbin O, Zou F, Allen M, Ertekin-Taner N, Ansari M et al. Concordant association of insulin degrading enzyme gene (IDE) variants with IDE mRNA, Abeta, and Alzheimer's disease. PLoS One 2010; 5: e8764.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bartl J, Scholz C-J, Hinterberger M, Jungwirth S, Wichart I, Rainer MK et al. Disorder-specific effects of polymorphisms at opposing ends of the insulin degrading enzyme gene. BMC Med Genet 2011; 12: 151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reitz C, Cheng R, Schupf N, Lee JH, Mehta PD, Rogaeva E et al. Association between variants in IDE-KIF11-HHEX and plasma amyloid beta levels. Neurobiol Aging 2012; 33: 199.e13–199.e17.

    Article  CAS  Google Scholar 

  58. Reitz C, van Rooij FJA, Soares HD, de Maat MPM, Hofman A, Witteman JCM et al. Matrix metalloproteinase 3 haplotypes and plasma amyloid beta levels: the Rotterdam study. Neurobiol Aging 2010; 31: 715–718.

    Article  CAS  PubMed  Google Scholar 

  59. Ferreira MAR, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  Google Scholar 

  61. Bi C, Wu J, Jiang T, Liu Q, Cai W, Yu P et al. Mutations of ANK3 identified by exome sequencing are associated with autism susceptibility. Hum Mutat 2012; 33: 1635–1638.

    Article  CAS  PubMed  Google Scholar 

  62. Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry 2004; 43: 6899–6908.

    Article  CAS  PubMed  Google Scholar 

  63. Qing H, He G, Ly PTT, Fox CJ, Staufenbiel M, Cai F et al. Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer's disease mouse models. J Exp Med 2008; 205: 2781–2789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lahiri DK, Sokol DK, Erickson C, Ray B, Ho CY, Maloney B . Autism as early neurodevelopmental disorder: evidence for an sAPPα-mediated anabolic pathway. Front Cell Neurosci 2013; 7: 94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Han M-R, Schellenberg GD, Wang L-S . Alzheimer’s Disease Neuroimaging Initiative. Genome-wide association reveals genetic effects on human Abeta42 and Tau protein levels in cerebrospinal fluids: a case control study. BMC Neurol 2010; 10: 90.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim S, Swaminathan S, Shen L, Risacher SL, Nho K, Foroud T et al. Genome-wide association study of CSF biomarkers Abeta1-42, t-tau, and p-tau181p in the ADNI cohort. Neurology 2011; 76: 69–79.

    Article  CAS  PubMed  Google Scholar 

  67. Cruchaga C, Kauwe JSK, Harari O, Jin SC, Cai Y, Karch CM et al. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease. Neuron 2013; 78: 256–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lambert JC, Amouyel P . Genetics of Alzheimer's disease: new evidences for an old hypothesis? Curr Opin Genet Dev 2011; 21: 295–301.

    Article  CAS  PubMed  Google Scholar 

  69. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 2010; 303: 1832–1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet 2011; 43: 429–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was made possible by the generous participation of the control participants and their families. This work was supported by the National Foundation for Alzheimer’s disease and related disorders, the Institut Pasteur de Lille, the Centre National de Génotypage, Inserm, FRC (fondation pour la recherche sur le cerveau) and Rotary. This work has been developed and supported by the LABEX (laboratory of excellence program investment for the future) DISTALZ grant (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease). JC was funded by the MEDIALZ Project (Grant 11001003) financed by ERDF (European Regional Development Fund) and Conseil Régional Nord Pas de Calais. The three-city study was performed as a part of collaboration between the Institut National de la Santé et de la Recherche Médicale (Inserm), the Victor Segalen Bordeaux II University and Sanofi-Synthélabo. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C study was also funded by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Agence Française de Sécurité Sanitaire des Produits de Santé, the Aquitaine and Bourgogne Regional Councils, Fondation de France and the joint French Ministry of Research/INSERM “Cohortes et collections de données biologiques” programme. Lille Génopôle received an unconditional grant from Eisai. The Rotterdam study is sponsored by the Erasmus Medical Center and Erasmus University Rotterdam, The Netherlands Organization for Scientific Research (I), The Netherlands Organization for Health Research and Development (ZonMW), the Research Institute for Diseases in the Elderly (RIDE), The Netherlands Genomics Initiative, the Ministry of Education, Culture and Science, the Ministry of Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. Further support was obtained from the Netherlands Consortium for Healthy Ageing. Dr Ikram was supported by a ZonMW Veni grant: 916.13.054. The cardiovascular health study (CHS) research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants HL080295, HL087652, HL105756 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through AG023629 from the National Institute on Aging (NIA). A full list of CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30 AG010129 and K01 AG030514.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J-C Lambert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chouraki, V., De Bruijn, R., Chapuis, J. et al. A genome-wide association meta-analysis of plasma Aβ peptides concentrations in the elderly. Mol Psychiatry 19, 1326–1335 (2014). https://doi.org/10.1038/mp.2013.185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.185

Keywords

This article is cited by

Search

Quick links