Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The ENCODE project: implications for psychiatric genetics

Subjects

Abstract

The ENCyclopedia Of DNA Elements (ENCODE) project is a public research consortium that aims to identify all functional elements of the human genome sequence. The project comprised 1640 data sets, from 147 different cell type and the findings were released in a coordinated set of 34 publications across several journals. The ENCODE publications report that 80.4% of the human genome displays some functionality. These data have important implications for interpreting results from large-scale genetics studies. We reviewed some of the key findings from the ENCODE publications and discuss how they can influence or inform further investigations into the genetic factors contributing to neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007; 447: 799–816.

    Article  CAS  PubMed  Google Scholar 

  2. Ni Y, Weber Hall A, Battenhouse A, Iyer VR . Simultaneous SNP identification and assessment of allele-specific bias from ChIP-seq data. BMC Genet 2012; 13: 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H et al. Systematic localization of common disease-associated variation in regulatory DNA. Science (New York, NY) 2012; 337: 1190–1195.

    Article  CAS  Google Scholar 

  4. Ward LD, Kellis M . Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science 2012; 337: 1675–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA . Circuitry and dynamics of human transcription factor regulatory networks. Cell 2012; 150: 1274–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Felsenfeld G, Boyes J, Chung J, Clark D, Studitsky V . Chromatin structure and gene expression. Proc Natl Acad Sci USA 1996; 93 (18): 9384–9388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E et al. The accessible chromatin landscape of the human genome. Nature 2012; 489: 75–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong X, Greven MC, Kundaje A, Djebali S, Brown JB, Cheng C et al. Modeling gene expression using chromatin features in various cellular contexts. Genome Biol 2012; 13: R53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dekker J . Gene regulation in the third dimension. Science (New York, NY) 2008; 319: 1793–1794.

    Article  CAS  Google Scholar 

  10. Sanyal A, Lajoie BR, Jain G, Dekker J . The long-range interaction landscape of gene promoters. Nature, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2012; 489: 109–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maston GA, Evans SK, Green MR . Transcriptional regulatory elements in the human genome. Annu Rev Genomics Human Genet 2006; 7: 29–59.

    Article  CAS  Google Scholar 

  12. Yip KY, Cheng C, Bhardwaj N, Brown JB, Leng J, Kundaje A et al. Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors. Genome Biol 2012; 13: R48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Whiteld TW, Wang J, Collins PJ, Partridge EC, Aldred SF, Trinklein ND et al. Functional analysis of transcription factor binding sites in human promoters. Genome Biol 2012; 13: R50.

    Article  CAS  Google Scholar 

  14. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, Cheng C et al. Architecture of the human regulatory network derived from ENCODE data. Nature 2012; 489: 91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dorus S, Vallender EJ, Evans PD, Anderson JR, Gilbert SL, Mahowald M et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 2004; 119: 1027–1040.

    Article  CAS  PubMed  Google Scholar 

  16. Pollard KS, Salama SR, Lambert N, Lambot M-A, Coppens S, Pedersen JS et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 2006; 443: 167–172.

    Article  CAS  PubMed  Google Scholar 

  17. Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 2012; 489: 83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vernot B, Stergachis AB, Maurano MT, Vierstra J, Neph S, Thurman RE et al. Personal and population genomics of human regulatory variation. Genome Res 2012; 22: 1689–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012; 22: 1790–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M . Linking disease associations with regulatory information in the human genome. Genome Res 2012; 22: 1748–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work is supported by an MRC Centre Grant (G0801418) and an MRC Programme Grant (G0800509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D H Kavanagh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavanagh, D., Dwyer, S., O'Donovan, M. et al. The ENCODE project: implications for psychiatric genetics. Mol Psychiatry 18, 540–542 (2013). https://doi.org/10.1038/mp.2013.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.13

Keywords

This article is cited by

Search

Quick links