Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

BCL-2 phosphorylation modulates sensitivity to the BH3 mimetic GX15-070 (Obatoclax) and reduces its synergistic interaction with bortezomib in chronic lymphocytic leukemia cells

Abstract

Chronic lymphocytic leukemia (CLL) is a B-cell lymphoid neoplasm with deregulated apoptosis and overexpression of several antiapoptotic BCL-2 proteins. GX15-070/Obatoclax is a small-molecule BH3 mimetic compound that has shown activity against several hematologic malignancies and solid tumors. In the present work, we report that GX15-070 led to the disruption of BCL-2/BIM and MCL-1/BAK complexes in CLL cells, followed by the activation of the mitochondrial apoptotic pathway. CLL cells showed lower sensitivity to GX15-070 than primary mantle cell lymphoma (MCL) ones, in correlation with higher levels of phosphorylated BCL-2 at serine 70 residue (pBCL-2(Ser70)) in CLL cells. Decrease in BCL-2 phosphorylation by extracellular signal-regulated kinase (ERK)1/2 inhibition increased CLL sensitivity to GX15-070, while blocking BCL-2 dephosphorylation using a PP2A antagonist reduced the activity of this BH3 mimetic. GX15-070 activity was increased by cotreatment with the proteasome inhibitor bortezomib. However, as proteasome inhibition led to the accumulation of phosphorylated BCL-2, the degree of interaction between GX15-070 and bortezomib was regulated by basal pBCL-2(Ser70) levels. These results support the role of BCL-2 phosphorylation as a mechanism of resistance to BH3 mimetic compounds, and demonstrate that combination approaches including ERK inhibitors could enhance BH3 mimetics activity both alone or in combination with proteasome inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  PubMed  Google Scholar 

  2. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  3. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Packham G, Stevenson FK . Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology 2005; 114: 441–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  6. Adams JM, Cory S . The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007; 26: 1324–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002; 2: 183–192.

    Article  CAS  PubMed  Google Scholar 

  8. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005; 19: 1294–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Puthalakath H, Strasser A . Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 2002; 9: 505–512.

    Article  CAS  PubMed  Google Scholar 

  10. May WS, Tyler PG, Ito T, Armstrong DK, Qatsha KA, Davidson NE . Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of BCL2 alpha in association with suppression of apoptosis. J Biol Chem 1994; 269: 26865–26870.

    CAS  PubMed  Google Scholar 

  11. Basu A, Haldar S . Microtubule-damaging drugs triggered bcl2 phosphorylation-requirement of phosphorylation on both serine-70 and serine-87 residues of bcl2 protein. Int J Oncol 1998; 13: 659–664.

    CAS  PubMed  Google Scholar 

  12. Ito T, Deng X, Carr B, May WS . Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 1997; 272: 11671–11673.

    Article  CAS  PubMed  Google Scholar 

  13. Ruvolo PP, Deng X, May WS . Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 2001; 15: 515–522.

    Article  CAS  PubMed  Google Scholar 

  14. Kurinna S, Konopleva M, Palla SL, Chen W, Kornblau S, Contractor R et al. Bcl2 phosphorylation and active PKC alpha are associated with poor survival in AML. Leukemia 2006; 20: 1316–1319.

    Article  CAS  PubMed  Google Scholar 

  15. Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ . Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 2004; 23: 1207–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S . Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 2000; 20: 1886–1896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dimmeler S, Breitschopf K, Haendeler J, Zeiher AM . Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J Exp Med 1999; 189: 1815–1822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Campas C, Cosialls AM, Barragan M, Iglesias-Serret D, Santidrian AF, Coll-Mulet L et al. Bcl-2 inhibitors induce apoptosis in chronic lymphocytic leukemia cells. Exp Hematol 2006; 34: 1663–1669.

    Article  CAS  PubMed  Google Scholar 

  19. Del Gaizo Moore V, Brown JR, Certo M, Love TM, Novina CD, Letai A . Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest 2007; 117: 112–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Brien SM, Cunningham CC, Golenkov AK, Turkina AG, Novick SC, Rai KR . Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 7697–7702.

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 2007; 104: 19512–19517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perez-Galan P, Roue G, Villamor N, Campo E, Colomer D . The BH3-mimetic GX15-070 synergizes with bortezomib in mantle cell lymphoma by enhancing Noxa-mediated activation of Bak. Blood 2007; 109: 4441–4449.

    Article  CAS  PubMed  Google Scholar 

  23. Borthakur G, O'Brien S, Ravandi-Kashani F, Giles F, Schimmer AD, Viallet J et al. A phase I trial of the small molecule pan-bcl-2 family inhibitor obatoclax mesylate (GX15-070) administered by 24 h infusion every 2 weeks to patients with myeloid malignancies and chronic lymphocytic leukemia (CLL). ASH Annu Meet Abstr 2006; 108: 2654.

    Google Scholar 

  24. Germain M, Mathai JP, McBride HM, Shore GC . Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 2005; 24: 1546–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roue G, Perez-Galan P, Lopez-Guerra M, Villamor N, Campo E, Colomer D . Selective inhibition of IkappaB kinase sensitizes mantle cell lymphoma B cells to TRAIL by decreasing cellular FLIP level. J Immunol 2007; 178: 1923–1930.

    Article  CAS  PubMed  Google Scholar 

  26. Konopleva M, Watt J, Contractor R, Tsao T, Harris D, Estrov Z et al. Mechanisms of antileukemic activity of the novel Bcl-2 homology domain-3 mimetic GX15-070 (obatoclax). Cancer Res 2008; 68: 3413–3420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trudel S, Li ZH, Rauw J, Tiedemann RE, Wen XY, Stewart AK . Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood 2007; 109: 5430–5438.

    Article  CAS  PubMed  Google Scholar 

  28. Deng X, Ruvolo P, Carr B, May Jr WS . Survival function of ERK1/2 as IL-3-activated, staurosporine-resistant Bcl2 kinases. Proc Natl Acad Sci USA 2000; 97: 1578–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin SS, Bassik MC, Suh H, Nishino M, Arroyo JD, Hahn WC et al. PP2A regulates BCL-2 phosphorylation and proteasome-mediated degradation at the endoplasmic reticulum. J Biol Chem 2006; 281: 23003–23012.

    Article  CAS  PubMed  Google Scholar 

  30. Favre B, Turowski P, Hemmings BA . Differential inhibition and posttranslational modification of protein phosphatase 1 and 2A in MCF7 cells treated with calyculin-A, okadaic acid, and tautomycin. J Biol Chem 1997; 272: 13856–13863.

    Article  CAS  PubMed  Google Scholar 

  31. Faderl S, Rai K, Gribben J, Byrd JC, Flinn IW, O′Brien S et al. Phase II study of single-agent bortezomib for the treatment of patients with fludarabine-refractory B-cell chronic lymphocytic leukemia. Cancer 2006; 107: 916–924.

    Article  CAS  PubMed  Google Scholar 

  32. Dyer MJ, Oscier DG . The configuration of the immunoglobulin genes in B cell chronic lymphocytic leukemia. Leukemia 2002; 16: 973–984.

    Article  CAS  PubMed  Google Scholar 

  33. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 2007; 109: 4944–4951.

    Article  CAS  PubMed  Google Scholar 

  35. Cuni S, Perez-Aciego P, Perez-Chacon G, Vargas JA, Sanchez A, Martin-Saavedra FM et al. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 2004; 18: 1391–1400.

    Article  CAS  PubMed  Google Scholar 

  36. Nishio M, Endo T, Tsukada N, Ohata J, Kitada S, Reed JC et al. Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood 2005; 106: 1012–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood 2005; 105: 4820–4827.

    Article  CAS  PubMed  Google Scholar 

  38. Zhai D, Jin C, Satterthwait AC, Reed JC . Comparison of chemical inhibitors of antiapoptotic Bcl-2-family proteins. Cell Death Differ 2006; 13: 1419–1421.

    Article  CAS  PubMed  Google Scholar 

  39. O'Brien S, Kipps TJ, Faderl S, Crump M, Keating MJ, Anderson B et al. A phase I trial of the small molecule Pan-Bcl-2 family inhibitor GX15-070 administered intravenously (IV) every 3 weeks to patients with previously treated chronic lymphocytic leukemia (CLL). ASH Annu Meet Abstr 2005; 106: 446.

    Google Scholar 

  40. Richardson SJ, Matthews C, Catherwood MA, Alexander HD, Carey BS, Farrugia J et al. ZAP-70 expression is associated with enhanced ability to respond to migratory and survival signals in B-cell chronic lymphocytic leukemia (B-CLL). Blood 2006; 107: 3584–3592.

    Article  CAS  PubMed  Google Scholar 

  41. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10: 375–388.

    Article  CAS  PubMed  Google Scholar 

  42. Fennell DA, Chacko A, Mutti L . BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene 2008; 27: 1189–1197.

    Article  CAS  PubMed  Google Scholar 

  43. Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D . The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 2006; 107: 257–264.

    Article  CAS  PubMed  Google Scholar 

  44. Bazzaro M, Lee MK, Zoso A, Stirling WL, Santillan A, Shih I et al. Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis. Cancer Res 2006; 66: 3754–3763.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by Ministerio de Educación y Ciencia SAF 06/8850 (D. Colomer); Lymphoma Research Foundation, European Commission contracts SLMM-CT-2004-503351; and RED 2006-20-014. PPG and GR hold postdoctoral contracts from Juan de la Cierva program (Ministerio de Educación y Ciencia) and c-RED program (Generalitat de Catalunya), respectively. MLP is the recipient of a FI predoctoral fellowship from Generalitat de Catalunya. We acknowledge Dr Mark Watson (GeminX Biotechnologies) for his technical advice on immunoprecipitation experiments. We finally thank Sandra Cabezas for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Colomer.

Additional information

Disclosure/Conflicts of interest

GCS is an employee and a stockholder of Gemin X Biotechnologies Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Galán, P., Roué, G., López-Guerra, M. et al. BCL-2 phosphorylation modulates sensitivity to the BH3 mimetic GX15-070 (Obatoclax) and reduces its synergistic interaction with bortezomib in chronic lymphocytic leukemia cells. Leukemia 22, 1712–1720 (2008). https://doi.org/10.1038/leu.2008.175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.175

Keywords

This article is cited by

Search

Quick links