Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

New ligands for melanocortin receptors

Abstract

Named originally for their effects on peripheral end organs, the melanocortin system controls a diverse set of physiological processes through a series of five G-protein-coupled receptors and several sets of small peptide ligands. The central melanocortin system plays an essential role in homeostatic regulation of body weight, in which two alternative ligands, α-melanocyte-stimulating hormone and agouti-related protein, stimulate and inhibit receptor signaling in several key brain regions that ultimately affect food intake and energy expenditure. Much of what we know about the relationship between central melanocortin signaling and body weight regulation stems from genetic studies. Comparative genomic studies indicate that melanocortin receptors used for controlling pigmentation and body weight regulation existed more than 500 million years ago in primitive vertebrates, but that fine-grained control of melanocortin receptors through neuropeptides and endogenous antagonists developed more recently. Recent studies based on dog coat-color genetics revealed a new class of melanocortin ligands, the β-defensins, which reveal the potential for cross talk between the melanocortin and the immune systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Loos RJ, Bouchard C . FTO: the first gene contributing to common forms of human obesity. Obes Rev 2008; 9: 246–250.

    CAS  PubMed  Google Scholar 

  2. Dina C . New insights into the genetics of body weight. Curr Opin Clin Nutr Metab Care 2008; 11: 378–384.

    CAS  PubMed  Google Scholar 

  3. O'Rahilly S, Farooqi IS . Genetics of obesity. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1095–1105.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Farooqi IS . Monogenic human obesity. Front Horm Res 2008; 36: 1–11.

    CAS  PubMed  Google Scholar 

  5. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW . Central nervous system control of food intake and body weight. Nature 2006; 443: 289–295.

    CAS  PubMed  Google Scholar 

  6. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB . Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 2005; 493: 63–71.

    CAS  PubMed  Google Scholar 

  7. Gao Q, Horvath TL . Neuronal control of energy homeostasis. FEBS Lett 2008; 582: 132–141.

    CAS  PubMed  Google Scholar 

  8. Wikberg JE, Mutulis F . Targeting melanocortin receptors: an approach to treat weight disorders and sexual dysfunction. Nat Rev Drug Discov 2008; 7: 307–323.

    CAS  PubMed  Google Scholar 

  9. Cone RD . Studies on the physiological functions of the melanocortin system. Endocr Rev 2006; 27: 736–749.

    CAS  PubMed  Google Scholar 

  10. Voisey J, Carroll L, van Daal A . Melanocortins and their receptors and antagonists. Curr Drug Targets 2003; 4: 586–597.

    CAS  PubMed  Google Scholar 

  11. Maaser C, Kannengiesser K, Kucharzik T . Role of the melanocortin system in inflammation. Ann N Y Acad Sci 2006; 1072: 123–134.

    CAS  PubMed  Google Scholar 

  12. Slominski A, Tobin DJ, Shibahara S, Wortsman J . Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004; 84: 1155–1228.

    CAS  PubMed  Google Scholar 

  13. Lerner AB . The discovery of melanotropins. A history of pituitary endocrinology. Ann N Y Acad Sci 1993; 680: 1–12.

    CAS  PubMed  Google Scholar 

  14. Strand FL . New vistas for melanocortins. Finally, an explanation for their pleiotropic functions. Ann N Y Acad Sci 1999; 897: 1–16.

    CAS  PubMed  Google Scholar 

  15. Gee CE, Chen CL, Roberts JL, Thompson R, Watson SJ . Identification of pro-opiomelanocortin neurones in rat hypothalamus by in situ cDNA–mRNA hybridization. Nature 1983; 306: 374–376.

    CAS  PubMed  Google Scholar 

  16. Watson SJ, Richard III CW, Barchas JD . Adrenocorticotropin in rat brain: immunocytochemical localization in cells and axons. Science 1978; 200: 1180–1182.

    CAS  PubMed  Google Scholar 

  17. Butler AA, Cone RD . Knockout studies defining different roles for melanocortin receptors in energy homeostasis. Ann N Y Acad Sci 2003; 994: 240–245.

    CAS  PubMed  Google Scholar 

  18. Lubrano-Berthelier C, Dubern B, Lacorte JM, Picard F, Shapiro A, Zhang S et al. Melanocortin 4 receptor mutations in a large cohort of severely obese adults: prevalence, functional classification, genotype–phenotype relationship, and lack of association with binge eating. J Clin Endocrinol Metab 2006; 91: 1811–1818.

    CAS  PubMed  Google Scholar 

  19. Slominski A, Plonka PM, Pisarchik A, Smart JL, Tolle V, Wortsman J et al. Preservation of eumelanin hair pigmentation in pro-opiomelanocortin-deficient mice on a nonagouti (a/a) genetic background. Endocrinology 2005; 146: 1245–1253.

    CAS  PubMed  Google Scholar 

  20. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U . Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 1999; 5: 1066–1070.

    CAS  PubMed  Google Scholar 

  21. Wortley KE, Anderson KD, Yasenchak J, Murphy A, Valenzuela D, Diano S et al. Agouti-related protein-deficient mice display an age-related lean phenotype. Cell Metab 2005; 2: 421–427.

    CAS  PubMed  Google Scholar 

  22. Kerns JA, Cargill EJ, Clark LA, Candille SI, Berryere TG, Olivier M et al. Linkage and segregation analysis of black and brindle coat color in domestic dogs. Genetics 2007; 176: 1679–1689.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, Nix MA et al. A β-defensin mutation causes black coat color in domestic dogs. Science 2007; 318: 1418–1423.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ganz T . Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3: 710–720.

    CAS  PubMed  Google Scholar 

  25. Semple CA, Gautier P, Taylor K, Dorin JR . The changing of the guard: molecular diversity and rapid evolution of beta-defensins. Mol Divers 2006; 10: 575–584.

    CAS  PubMed  Google Scholar 

  26. Dorin JR, Jackson IJ . Genetics. Beta-defensin repertoire expands. Science 2007; 318: 1395.

    CAS  PubMed  Google Scholar 

  27. Lee TH, Lerner AB . Isolation of melanocyte-stimulating hormone from hog pituitary gland. J Biol Chem 1956; 221: 943–959.

    CAS  PubMed  Google Scholar 

  28. Li CH, Geschwind II, Levy AL, Harris JI, Dixon JS, Pon NG et al. Isolation and properties of alpha-corticotrophin from sheep pituitary glands. Nature 1954; 173: 251–253.

    CAS  PubMed  Google Scholar 

  29. Eipper BA, Mains RE . Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides. Endocr Rev 1980; 1: 1–27.

    CAS  PubMed  Google Scholar 

  30. Mains RE, Eipper BA, Ling N . Common precursor to corticotropins and endorphins. Proc Natl Acad Sci USA 1977; 74: 3014–3018.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rubinstein M, Stein S, Udenfriend S . Characterization of pro-opiocortin, a precursor to opioid peptides and corticotropin. Proc Natl Acad Sci USA 1978; 75: 669–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nozaki M, Shimotani T, Uchida K . Gonadotropin-like and adrenocorticotropin-like cells in the pituitary gland of hagfish, Paramyxine atami; immunohistochemistry in combination with lectin histochemistry. Cell Tissue Res 2007; 328: 563–572.

    CAS  PubMed  Google Scholar 

  33. Nozaki M, Takahashi A, Amemiya Y, Kawauchi H, Sower SA . Distribution of lamprey adrenocorticotropin and melanotropins in the pituitary of the adult sea lamprey, Petromyzon marinus. Gen Comp Endocrinol 1995; 98: 147–156.

    CAS  PubMed  Google Scholar 

  34. Haitina T, Klovins J, Takahashi A, Lowgren M, Ringholm A, Enberg J et al. Functional characterization of two melanocortin (MC) receptors in lamprey showing orthology to the MC1 and MC4 receptor subtypes. BMC Evol Biol 2007; 7: 101.

    PubMed  PubMed Central  Google Scholar 

  35. Stefano GB, Salzet-Raveillon B, Salzet M . Mytilus edulis hemolymph contains pro-opiomelanocortin: LPS and morphine stimulate differential processing. Brain Res Mol Brain Res 1999; 63: 340–350.

    CAS  PubMed  Google Scholar 

  36. Salzet M, Salzet-Raveillon B, Cocquerelle C, Verger-Bocquet M, Pryor SC, Rialas CM et al. Leech immunocytes contain pro-opiomelanocortin: nitric oxide mediates hemolymph pro-opiomelanocortin processing. J Immunol 1997; 159: 5400–5411.

    CAS  PubMed  Google Scholar 

  37. Stefano GB, Salzet M . Invertebrate opioid precursors: evolutionary conservation and the significance of enzymatic processing. Int Rev Cytol 1999; 187: 261–286.

    CAS  PubMed  Google Scholar 

  38. Takahashi A, Kawauchi H . Evolution of melanocortin systems in fish. Gen Comp Endocrinol 2006; 148: 85–94.

    CAS  PubMed  Google Scholar 

  39. Kawauchi H, Sower SA . The dawn and evolution of hormones in the adenohypophysis. Gen Comp Endocrinol 2006; 148: 3–14.

    CAS  PubMed  Google Scholar 

  40. Campbell RK, Satoh N, Degnan BM . Piecing together evolution of the vertebrate endocrine system. Trends Genet 2004; 20: 359–366.

    CAS  PubMed  Google Scholar 

  41. Kozak K, Costantino D, Lecaude S, Sollars C, Danielson P, Dores RM . Analyzing the radiation of the melanocortins in amphibians: cloning of POMC cDNAs from the pituitary of the urodele amphibians, Amphiuma means and Necturus maculosus. Peptides 2005; 26: 1920–1928.

    CAS  PubMed  Google Scholar 

  42. Dores RM, Lecaude S, Bauer D, Danielson PB . Analyzing the evolution of the opioid/orphanin gene family. Mass Spectrom Rev 2002; 21: 220–243.

    CAS  PubMed  Google Scholar 

  43. Danielson PB, Dores RM . Molecular evolution of the opioid/orphanin gene family. Gen Comp Endocrinol 1999; 113: 169–186.

    CAS  PubMed  Google Scholar 

  44. Klovins J, Schioth HB . Agouti-related proteins (AGRPs) and agouti-signaling peptide (ASIP) in fish and chicken. Ann N Y Acad Sci 2005; 1040: 363–367.

    CAS  PubMed  Google Scholar 

  45. Metz JR, Peters JJ, Flik G . Molecular biology and physiology of the melanocortin system in fish: a review. Gen Comp Endocrinol 2006; 148: 150–162.

    CAS  PubMed  Google Scholar 

  46. Cerda-Reverter JM, Schioth HB, Peter RE . The central melanocortin system regulates food intake in goldfish. Regul Pept 2003; 115: 101–113.

    CAS  PubMed  Google Scholar 

  47. Song Y, Cone RD . Creation of a genetic model of obesity in a teleost. FASEB J 2007; 21: 2042–2049.

    CAS  PubMed  Google Scholar 

  48. Song Y, Golling G, Thacker TL, Cone RD . Agouti-related protein (AGRP) is conserved and regulated by metabolic state in the zebrafish, Danio rerio. Endocrine 2003; 22: 257–265.

    CAS  PubMed  Google Scholar 

  49. Klovins J, Haitina T, Fridmanis D, Kilianova Z, Kapa I, Fredriksson R et al. The melanocortin system in Fugu: determination of POMC/AGRP/MCR gene repertoire and synteny, as well as pharmacology and anatomical distribution of the MCRs. Mol Biol Evol 2004; 21: 563–579.

    CAS  PubMed  Google Scholar 

  50. McNulty JC, Jackson PJ, Thompson DA, Chai B, Gantz I, Barsh GS et al. Structures of the agouti signaling protein. J Mol Biol 2005; 346: 1059–1070.

    CAS  PubMed  Google Scholar 

  51. McNulty JC, Thompson DA, Bolin KA, Wilken J, Barsh GS, Millhauser GL . High-resolution NMR structure of the chemically-synthesized melanocortin receptor binding domain AGRP(87–132) of the agouti-related protein. Biochemistry 2001; 40: 15520–15527.

    CAS  PubMed  Google Scholar 

  52. Norton RS, Pallaghy PK . The cystine knot structure of ion channel toxins and related polypeptides. Toxicon 1998; 36: 1573–1583.

    CAS  PubMed  Google Scholar 

  53. Hughes AL . Evolutionary diversification of the mammalian defensins. Cell Mol Life Sci 1999; 56: 94–103.

    CAS  PubMed  Google Scholar 

  54. Patil AA, Cai Y, Sang Y, Blecha F, Zhang G . Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Physiol Genomics 2005; 23: 5–17.

    CAS  PubMed  Google Scholar 

  55. Zou J, Mercier C, Koussounadis A, Secombes C . Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 2007; 44: 638–647.

    CAS  PubMed  Google Scholar 

  56. Castle WE, Little CC . On a modified Mendelian ratio among yellow mice. Science 1910; 32: 868–870.

    CAS  PubMed  Google Scholar 

  57. Siracusa LD . The agouti gene: turned on to yellow. Trends Genet 1994; 10: 423–428.

    CAS  PubMed  Google Scholar 

  58. Duhl DM, Vrieling H, Miller KA, Wolff GL, Barsh GS . Neomorphic agouti mutations in obese yellow mice. Nat Genet 1994; 8: 59–65.

    CAS  PubMed  Google Scholar 

  59. Miller MW, Duhl DMJ, Vrieling H, Cordes SP, Ollmann MM, Winkes BM et al. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the Lethal–Yellow mutation. Genes Dev 1993; 7: 454–467.

    CAS  PubMed  Google Scholar 

  60. Bultman SJ, Michaud EJ, Woychik RP . Molecular characterization of the mouse agouti locus. Cell 1992; 71: 1195–1204.

    CAS  PubMed  Google Scholar 

  61. Michaud EJ, Bultman SJ, Klebig ML, van Vugt MJ, Stubbs LJ, Russell LB et al. A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Proc Natl Acad Sci USA 1994; 91: 2562–2566.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Silvers WK . The agouti and extension series of alleles, umbrous and sable. In: The Coat Colors of Mice. Springer-Verlag: New York, 1979, pp 6–44.

    Google Scholar 

  63. Robbins LS, Nadeau JH, Johnson KR, Kelly MA, Roselli-Rehfuss L, Baack E et al. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 1993; 72: 827–834.

    CAS  PubMed  Google Scholar 

  64. Yang YK, Ollmann MM, Wilson BD, Dickinson C, Yamada T, Barsh GS et al. Effects of recombinant agouti-signaling protein on melanocortin action. Mol Endocrinol 1997; 11: 274–280.

    CAS  PubMed  Google Scholar 

  65. Ollmann MM, Lamoreux ML, Wilson BD, Barsh GS . Interaction of agouti protein with the melanocortin 1 receptor in vitro and in vivo. Genes Dev 1998; 12: 316–330.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu DS, Willard D, Patel IR, Kadwell S, Overton L, Kost T et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 1994; 371: 799–802.

    CAS  PubMed  Google Scholar 

  67. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997; 278: 135–138.

    CAS  PubMed  Google Scholar 

  68. Yang YK, Thompson DA, Dickinson CJ, Wilken J, Barsh GS, Kent SB et al. Characterization of agouti-related protein binding to melanocortin receptors. Mol Endocrinol 1999; 13: 148–155.

    CAS  PubMed  Google Scholar 

  69. Graham M, Shutter JR, Sarmiento U, Sarosi I, Stark KL . Overexpression of Agrt leads to obesity in transgenic mice. Nat Genet 1997; 17: 273–274.

    CAS  PubMed  Google Scholar 

  70. Siegrist W, Drozdz R, Cotti R, Willard DH, Wilkison WO, Eberle AN . Interactions of alpha-melanotropin and agouti on B16 melanoma cells: evidence for inverse agonism of agouti. J Recept Signal Transduct Res 1997; 17: 75–98.

    CAS  PubMed  Google Scholar 

  71. Nijenhuis WA, Oosterom J, Adan RA . AgRP(83–132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol 2001; 15: 164–171.

    CAS  PubMed  Google Scholar 

  72. Chai BX, Neubig RR, Millhauser GL, Thompson DA, Jackson PJ, Barsh GS et al. Inverse agonist activity of agouti and agouti-related protein. Peptides 2003; 24: 603–609.

    CAS  PubMed  Google Scholar 

  73. Jackson PJ, Douglas NR, Chai B, Binkley J, Sidow A, Barsh GS et al. Structural and molecular evolutionary analysis of Agouti and Agouti-related proteins. Chem Biol 2006; 13: 1297–1305.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kiefer LL, Ittoop ORR, Bunce K, Truesdale AT, Willard DH, Nichols JS et al. Mutations in the carboxyl terminus of the agouti protein decrease agouti inhibition of ligand binding to the melanocortin receptors. Biochemistry 1997; 36: 2084–2090.

    CAS  PubMed  Google Scholar 

  75. Kiefer LL, Veal JM, Mountjoy KG, Wilkison WO . Melanocortin receptor binding determinants in the agouti protein. Biochemistry 1998; 37: 991–997.

    CAS  PubMed  Google Scholar 

  76. Gunn TM, Miller KA, He L, Hyman RW, Davis RW, Azarani A et al. The mouse mahogany locus encodes a transmembrane form of human attractin. Nature 1999; 398: 152–156.

    CAS  PubMed  Google Scholar 

  77. He L, Gunn TM, Bouley DM, Lu XY, Watson SJ, Schlossman SF et al. A biochemical function for attractin in agouti-induced pigmentation and obesity. Nat Genet 2001; 27: 40–47.

    CAS  PubMed  Google Scholar 

  78. Creemers JW, Pritchard LE, Gyte A, Le Rouzic P, Meulemans S, Wardlaw SL et al. Agouti-related protein is posttranslationally cleaved by proprotein convertase 1 to generate agouti-related protein (AGRP)83-132: interaction between AGRP83-132 and melanocortin receptors cannot be influenced by syndecan-3. Endocrinology 2006; 147: 1621–1631.

    CAS  PubMed  Google Scholar 

  79. Pritchard LE, White A . Agouti-related protein: more than a melanocortin-4 receptor antagonist? Peptides 2005; 26: 1759–1770.

    CAS  PubMed  Google Scholar 

  80. Perry WL, Nakamura T, Swing DA, Secrest L, Eagleson B, Hustad CM et al. Coupled site-directed mutagenesis/transgenesis identifies important functional domains of the mouse agouti protein. Genetics 1996; 144: 255–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. He L, Eldridge AG, Jackson PK, Gunn TM, Barsh GS . Accessory proteins for melanocortin signaling: attractin and mahogunin. Ann N Y Acad Sci 2003; 994: 288–298.

    CAS  PubMed  Google Scholar 

  82. Ollmann MM, Barsh GS . Down-regulation of melanocortin receptor signaling mediated by the amino terminus of Agouti protein in Xenopus melanophores. J Biol Chem 1999; 274: 15837–15846.

    CAS  PubMed  Google Scholar 

  83. Wright S . Color inheritance in mammals. J Hered 1917; 8: 224–235.

    Google Scholar 

  84. Wright S . Color inheritance in mammals-II. The mouse. J Hered 1917; 8: 373–378.

    Google Scholar 

  85. Searle AG . Comparative Genetics of Coat Color in Mammals. Academic Press: New York, NY, 1968.

    Google Scholar 

  86. Little CC . The Inheritance of Coat Color in Dogs. Comstock: Ithaca, NY, 1957.

    Google Scholar 

  87. Kerns JA, Newton J, Berryere TG, Rubin EM, Cheng JF, Schmutz SM et al. Characterization of the dog Agouti gene and a non-agouti mutation in German shepherd dogs. Mamm Genome 2004; 15: 798–808.

    CAS  PubMed  Google Scholar 

  88. Kerns JA, Olivier M, Lust G, Barsh GS . Exclusion of melanocortin-1 receptor (mc1r) and agouti as candidates for dominant black in dogs. J Hered 2003; 94: 75–79.

    CAS  PubMed  Google Scholar 

  89. Aldred PM, Hollox EJ, Armour JA . Copy number polymorphism and expression level variation of the human alpha-defensin genes DEFA1 and DEFA3. Hum Mol Genet 2005; 14: 2045–2052.

    CAS  PubMed  Google Scholar 

  90. Morrison G, Kilanowski F, Davidson D, Dorin J . Characterization of the mouse beta defensin 1, Defb1, mutant mouse model. Infect Immun 2002; 70: 3053–3060.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Moser C, Weiner DJ, Lysenko E, Bals R, Weiser JN, Wilson JM . Beta-defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 2002; 70: 3068–3072.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sinha PS, Schioth HB, Tatro JB . Activation of central melanocortin-4 receptor suppresses lipopolysaccharide-induced fever in rats. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1595–R1603.

    CAS  PubMed  Google Scholar 

  93. Tatro JB, Sinha PS . The central melanocortin system and fever. Ann N Y Acad Sci 2003; 994: 246–257.

    CAS  PubMed  Google Scholar 

  94. Catania A, Gatti S, Colombo G, Lipton JM . Alpha-melanocyte stimulating hormone in modulation of inflammatory reactions. Pediatr Endocrinol Rev 2003; 1: 101–108.

    PubMed  Google Scholar 

  95. Catania A, Gatti S, Colombo G, Lipton JM . Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev 2004; 56: 1–29.

    CAS  PubMed  Google Scholar 

  96. Luger TA, Scholzen TE, Brzoska T, Bohm M . New insights into the functions of alpha-MSH and related peptides in the immune system. Ann N Y Acad Sci 2003; 994: 133–140.

    CAS  PubMed  Google Scholar 

  97. Lechan RM, Tatro JB . Hypothalamic melanocortin signaling in cachexia. Endocrinology 2001; 142: 3288–3291.

    CAS  PubMed  Google Scholar 

  98. Marks DL, Butler AA, Turner R, Brookhart G, Cone RD . Differential role of melanocortin receptor subtypes in cachexia. Endocrinology 2003; 144: 1513–1523.

    CAS  PubMed  Google Scholar 

  99. Wisse BE, Frayo RS, Schwartz MW, Cummings DE . Reversal of cancer anorexia by blockade of central melanocortin receptors in rats. Endocrinology 2001; 142: 3292–3301.

    CAS  PubMed  Google Scholar 

  100. de Wied D . Melanotropins as neuropeptides. Ann N Y Acad Sci 1993; 680: 20–28.

    CAS  PubMed  Google Scholar 

  101. de Wied D . Inhibitory effect of ACTH and related peptides on extinction of conditioned avoidance behavior in rats. Proc Soc Exp Biol Med 1966; 122: 28–32.

    CAS  PubMed  Google Scholar 

  102. Bohus B, De Wied D . Inhibitory and facilitatory effect of two related peptides on extinction of avoidance behavior. Science 1966; 153: 318–320.

    CAS  PubMed  Google Scholar 

  103. Ferrari W, Gessa GL, Vargiu L . Behavioral effects induced by intracisternally injected ACTH and MSH. Ann N Y Acad Sci 1963; 104: 330–345.

    CAS  PubMed  Google Scholar 

  104. Lipton JM, Glyn JR, Zimmer JA . ACTH and alpha-melanotropin in central temperature control. Fed Proc 1981; 40: 2760–2764.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some of the work described was supported by grants from the National Institutes of Health to GSB and to GLM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G S Barsh.

Additional information

Conflict of interest

Pilgrim Jackson has equity ownership/stock options with Celgene. Gregory S Barsh has received consulting fees from Merck and grant support from NIH. The remaining authors have declared no financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaelin, C., Candille, S., Yu, B. et al. New ligands for melanocortin receptors. Int J Obes 32 (Suppl 7), S19–S27 (2008). https://doi.org/10.1038/ijo.2008.234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.234

Keywords

This article is cited by

Search

Quick links