Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Improvement of the mdx mouse dystrophic phenotype by systemic in utero AAV8 delivery of a minidystrophin gene

Abstract

Duchenne muscular dystrophy (DMD) is a devastating primary muscle disease with pathological changes in skeletal muscle that are ongoing at the time of birth. Progressive deterioration in striated muscle function in affected individuals ultimately results in early death due to cardio-pulmonary failure. As affected individuals can be identified before birth by prenatal genetic testing for DMD, gene replacement treatment can be started in utero. This approach offers the possibility of preventing pathological changes in muscle that begin early in life. To test in utero gene transfer in the mdx mouse model of DMD, a minidystrophin gene driven by the human cytomegalovirus promoter was delivered systemically by an intraperitoneal injection to the fetus at embryonic day 16. Treated mdx mice studied at 9 weeks after birth showed widespread expression of recombinant dystrophin in skeletal muscle, restoration of the dystrophin-associated glycoprotein complex in dystrophin-expressing muscle fibers, improved muscle pathology, and functional benefit to the transduced diaphragm compared with untreated littermate controls. These results support the potential of the AAV8 vector to efficiently cross the blood vessel barrier to achieve systemic gene transfer to skeletal muscle in utero in a mouse model of muscular dystrophy, to significantly improve the dystrophic phenotype and to ameliorate the processes that lead to exhaustion of the skeletal muscle regenerative capacity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Emery AE . Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul Disord 1991; 1: 19–29.

    Article  CAS  PubMed  Google Scholar 

  2. Emery AEH, Muntoni F . Duchenne Muscular Dystrophy. Oxford Univ Press: Oxford, New York, 2003.

    Google Scholar 

  3. Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M, Meuse L et al. rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med 2006; 12: 787–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu M, Yue Y, Harper SQ, Grange RW, Chamberlain JS, Duan D . Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol Ther 2005; 11: 245–256.

    Article  CAS  PubMed  Google Scholar 

  6. Yoshimura M, Sakamoto M, Ikemoto M, Mochizuki Y, Yuasa K, Miyagoe-Suzuki Y et al. AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol Ther 2004; 10: 821–828.

    Article  CAS  PubMed  Google Scholar 

  7. McClorey G, Moulton HM, Iversen PL, Fletcher S, Wilton SD . Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Therapy 2006; 13: 1373–1381.

    Article  CAS  PubMed  Google Scholar 

  8. Cerletti M, Negri T, Cozzi F, Colpo R, Andreetta F, Croci D et al. Dystrophic phenotype of canine X-linked muscular dystrophy is mitigated by adenovirus-mediated utrophin gene transfer. Gene Therapy 2003; 10: 750–757.

    Article  CAS  PubMed  Google Scholar 

  9. Daya S, Berns KI . Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 2008; 21: 583–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  PubMed  Google Scholar 

  12. Rodino-Klapac LR, Janssen PM, Montgomery CL, Coley BD, Chicoine LG, Clark KR et al. A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy. J Transl Med 2007; 5: 45.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Emerson CP, Hauschka SD . Embryonic Origins of Skeletal Muscles. In: Engel AG, Franzini-Armstrong C (eds). Myology. McGraw-Hill: NewYork USA, 2004, pp 3–44.

    Google Scholar 

  14. Biressi S, Molinaro M, Cossu G . Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 2007; 308: 281–293.

    Article  CAS  PubMed  Google Scholar 

  15. Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S et al. The formation of skeletal muscle: from somite to limb. J Anat 2003; 202: 59–68.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Duxson MJ, Usson Y . Cellular insertion of primary and secondary myotubes in embryonic rat muscles. Development 1989; 107: 243–251.

    CAS  PubMed  Google Scholar 

  17. Ontell M, Bourke D, Hughes D . Cytoarchitecture of the fetal murine soleus muscle. Am J Anat 1988; 181: 267–278.

    Article  CAS  PubMed  Google Scholar 

  18. Ontell M, Kozeka K . Organogenesis of the mouse extensor digitorum logus muscle: a quantitative study. Am J Anat 1984; 171: 149–161.

    Article  CAS  PubMed  Google Scholar 

  19. Ontell M, Kozeka K . The organogenesis of murine striated muscle: a cytoarchitectural study. Am J Anat 1984; 171: 133–148.

    Article  CAS  PubMed  Google Scholar 

  20. Waddington SN, Nivsarkar MS, Mistry AR, Buckley SM, Kemball-Cook G, Mosley KL et al. Permanent phenotypic correction of hemophilia B in immunocompetent mice by prenatal gene therapy. Blood 2004; 104: 2714–2721.

    Article  CAS  PubMed  Google Scholar 

  21. Waddington SN, Buckley SM, Nivsarkar M, Jezzard S, Schneider H, Dahse T et al. In utero gene transfer of human factor IX to fetal mice can induce postnatal tolerance of the exogenous clotting factor. Blood 2003; 101: 1359–1366.

    Article  CAS  PubMed  Google Scholar 

  22. Sabatino DE, Mackenzie TC, Peranteau W, Edmonson S, Campagnoli C, Liu YL et al. Persistent expression of hF IX After tolerance induction by in utero or neonatal administration of AAV-1-F IX in hemophilia B mice. Mol Ther 2007; 15: 1677–1685.

    Article  CAS  PubMed  Google Scholar 

  23. Huard J, Feero WG, Watkins SC, Hoffman EP, Rosenblatt DJ, Glorioso JC . The basal lamina is a physical barrier to herpes simplex virus-mediated gene delivery to mature muscle fibers. J Virol 1996; 70: 8117–8123.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Reay DP, Bilbao R, Koppanati BM, Cai L, O'Day TL, Jiang Z et al. Full-length dystrophin gene transfer to the mdx mouse in utero. Gene Therapy 2008; 15: 531–536.

    Article  CAS  PubMed  Google Scholar 

  25. Koppanati BM, Li J, Xiao X, Clemens PR . Systemic delivery of AAV8 in utero results in gene expression in diaphragm and limb muscle: treatment implications for muscle disorders. Gene Therapy 2009; 16: 1130–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blake DJ, Weir A, Newey SE, Davies KE . Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002; 82: 291–329.

    Article  CAS  PubMed  Google Scholar 

  27. Rando TA . The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 2001; 24: 1575–1594.

    Article  CAS  PubMed  Google Scholar 

  28. Torres LF, Duchen LW . The mutant mdx: inherited myopathy in the mouse Morphological studies of nerves, muscles and end-plates. Brain 1987; 110 (Part 2): 269–299.

    Article  PubMed  Google Scholar 

  29. Bockhold KJ, Rosenblatt JD, Partridge TA . Aging normal and dystrophic mouse muscle: analysis of myogenicity in cultures of living single fibers. Muscle Nerve 1998; 21: 173–183.

    Article  CAS  PubMed  Google Scholar 

  30. Watchko JF, Johnson BD, Gosselin LE, Prakash YS, Sieck GC . Age-related differences in diaphragm muscle injury after lengthening activations. J Appl Physiol 1994; 77: 2125–2133.

    Article  CAS  PubMed  Google Scholar 

  31. Watchko JF, O'Day TL, Hoffman EP . Functional characteristics of dystrophic skeletal muscle: insights from animal models. J Appl Physiol 2002; 93: 407–417.

    Article  PubMed  Google Scholar 

  32. Karolewski BA, Wolfe JH . Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther 2006; 14: 14–24.

    Article  CAS  PubMed  Google Scholar 

  33. Shen JS, Meng XL, Maeda H, Ohashi T, Eto Y . Widespread gene transduction to the central nervous system by adenovirus in utero: implication for prenatal gene therapy to brain involvement of lysosomal storage disease. J Gene Med 2004; 6: 1206–1215.

    Article  CAS  PubMed  Google Scholar 

  34. Seppen J, van der Rijt R, Looije N, van Til NP, Lamers WH, Oude Elferink RP . Long-term correction of bilirubin UDPglucuronyltransferase deficiency in rats by in utero lentiviral gene transfer. Mol Ther 2003; 8: 593–599.

    Article  CAS  PubMed  Google Scholar 

  35. Han XD, Lin C, Chang J, Sadelain M, Kan YW . Fetal gene therapy of alpha-thalassemia in a mouse model. Proc Natl Acad Sci USA 2007; 104: 9007–9011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Larson JE, Morrow SL, Happel L, Sharp JF, Cohen JC . Reversal of cystic fibrosis phenotype in mice by gene therapy in utero. Lancet 1997; 349: 619–620.

    Article  CAS  PubMed  Google Scholar 

  37. Rucker M, Fraites Jr TJ, Porvasnik SL, Lewis MA, Zolotukhin I, Cloutier DA et al. Rescue of enzyme deficiency in embryonic diaphragm in a mouse model of metabolic myopathy: Pompe disease. Development 2004; 131: 3007–3019.

    Article  CAS  PubMed  Google Scholar 

  38. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE . Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  39. Ziegler RJ, Bercury SD, Fidler J, Zhao MA, Foley J, Taksir TV et al. Ability of adeno-associated virus serotype 8-mediated hepatic expression of acid alpha-glucosidase to correct the biochemical and motor function deficits of presymptomatic and symptomatic Pompe mice. Hum Gene Ther 2008; 19: 609–621.

    Article  CAS  PubMed  Google Scholar 

  40. Sun B, Zhang H, Franco LM, Young SP, Schneider A, Bird A et al. Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther 2005; 11: 57–65.

    Article  CAS  PubMed  Google Scholar 

  41. Qiao C, Li J, Jiang J, Zhu X, Wang B, Li J et al. Myostatin propeptide gene delivery by adeno-associated virus serotype 8 vectors enhances muscle growth and ameliorates dystrophic phenotypes in mdx mice. Hum Gene Ther 2008; 19: 241–254.

    Article  CAS  PubMed  Google Scholar 

  42. Wang B, Li J, Qiao C, Chen C, Hu P, Zhu X et al. A canine minidystrophin is functional and therapeutic in mdx mice. Gene Therapy 2008; 15: 1099–1106.

    Article  CAS  PubMed  Google Scholar 

  43. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li J, Samulski RJ, Xiao X . Role for highly regulated rep gene expression in adeno-associated virus vector production. J Virol 1997; 71: 5236–5243.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bilbao R, Reay DP, Wu E, Zheng H, Biermann V, Kochanek S et al. Comparison of high-capacity and first-generation adenoviral vector gene delivery to murine muscle in utero. Gene Therapy 2005; 12: 39–47.

    Article  CAS  PubMed  Google Scholar 

  46. Lu QL, Partridge TA . A new blocking method for application of murine monoclonal antibody to mouse tissue sections. J Histochem Cytochem 1998; 46: 977–984.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant R01 AR050565 (PRC) and R01 AR45967 (XX) from the NIH. The authors take full responsibility for the contents of this paper, which do not represent the views of the Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P R Clemens.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koppanati, B., Li, J., Reay, D. et al. Improvement of the mdx mouse dystrophic phenotype by systemic in utero AAV8 delivery of a minidystrophin gene. Gene Ther 17, 1355–1362 (2010). https://doi.org/10.1038/gt.2010.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.84

Keywords

This article is cited by

Search

Quick links