Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A genome-wide admixture scan for ancestry-linked genes predisposing to sarcoidosis in African-Americans

Abstract

Genome-wide linkage and association studies have uncovered variants associated with sarcoidosis, a multiorgan granulomatous inflammatory disease. African ancestry may influence disease pathogenesis, as African-Americans are more commonly affected by sarcoidosis. Therefore, we conducted the first sarcoidosis genome-wide ancestry scan using a map of 1384 highly ancestry-informative single-nucleotide polymorphisms genotyped on 1357 sarcoidosis cases and 703 unaffected controls self-identified as African-American. The most significant ancestry association was at marker rs11966463 on chromosome 6p22.3 (ancestry association risk ratio (aRR)=1.90; P=0.0002). When we restricted the analysis to biopsy-confirmed cases, the aRR for this marker increased to 2.01; P=0.00007. Among the eight other markers that demonstrated suggestive ancestry associations with sarcoidosis were rs1462906 on chromosome 8p12, which had the most significant association with European ancestry (aRR=0.65; P=0.002), and markers on chromosomes 5p13 (aRR=1.46; P=0.005) and 5q31 (aRR=0.67; P=0.005), which correspond to regions we previously identified through sib-pair linkage analyses. Overall, the most significant ancestry association for Scadding stage IV cases was to marker rs7919137 on chromosome 10p11.22 (aRR=0.27; P=2 × 10−5), a region not associated with disease susceptibility. In summary, through admixture mapping of sarcoidosis we have confirmed previous genetic linkages and identified several novel putative candidate loci for sarcoidosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. ATS Board of Directors and by the ERS Executive Committee. Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG). Am J Respir Crit Care Med 1999; 160: 736–755.

  2. Schurmann M, Lympany PA, Reichel P, Muller-Myhsok B, Wurm K, Schlaak M et al. Familial sarcoidosis is linked to the major histocompatibility complex region. Am J Respir Crit Care Med 2000; 162: 861–864.

    Article  CAS  PubMed  Google Scholar 

  3. Valentonyte R, Hampe J, Huse K, Rosenstiel P, Albrecht M, Stenzel A et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat Genet 2005; 37: 357–364.

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Wollnik B, Pabst S, Lennarz M, Rohmann E, Gillissen A et al. BTNL2 gene variant and sarcoidosis. Thorax 2006; 61: 273–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rybicki BA, Walewski JL, Maliarik MJ, Kian H, Iannuzzi MC . The BTNL2 gene and sarcoidosis susceptibility in African Americans and Whites. Am J Hum Genet 2005; 77: 491–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spagnolo P, Sato H, Grutters JC, Renzoni EA, Marshall SE, Ruven HJ et al. Analysis of BTNL2 genetic polymorphisms in British and Dutch patients with sarcoidosis. Tissue Antigens 2007; 70: 219–227.

    Article  CAS  PubMed  Google Scholar 

  7. Rybicki BA, Hirst K, Iyengar SK, Barnard JG, Judson MA, Rose CS et al. A sarcoidosis genetic linkage consortium: the sarcoidosis genetic analysis (SAGA) study. Sarcoidosis Vasc Diffuse Lung Dis 2005; 22: 115–122.

    PubMed  Google Scholar 

  8. Iannuzzi MC, Iyengar SK, Gray-McGuire C, Elston RC, Baughman RP, Donohue JF et al. Genome-wide search for sarcoidosis susceptibility genes in African Americans. Genes Immun 2005; 6: 509–518.

    Article  CAS  PubMed  Google Scholar 

  9. Rybicki BA, Sinha R, Iyengar S, Gray-McGuire C, Elston RC, Iannuzzi MC . Genetic linkage analysis of sarcoidosis phenotypes: the sarcoidosis genetic analysis (SAGA) study. Genes Immun 2007; 8: 379–386.

    Article  CAS  PubMed  Google Scholar 

  10. Hofmann S, Franke A, Fischer A, Jacobs G, Nothnagel M, Gaede KI et al. Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet 2008; 40: 1103–1106.

    Article  CAS  PubMed  Google Scholar 

  11. Rybicki BA, Major M, Popovich JJ, Maliarik MJ, Iannuzzi MC . Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol 1997; 145: 234–241.

    Article  CAS  PubMed  Google Scholar 

  12. Gundelfinger BF, Britten SA . Sarcoidosis in the United States Navy. Am Rev Respir Dis 1961; 84 (suppl): 109–115.

    PubMed  Google Scholar 

  13. Sartwell PE, Edwards LB . Epidemiology of sarcoidosis in the US Navy. Am J Epidemiol 1974; 99: 250–257.

    Article  CAS  PubMed  Google Scholar 

  14. Benatar SR . Sarcoidosis in South Africa. A comparative study in Whites, Blacks and Coloureds. S Afr Med J 1977; 52: 602–606.

    CAS  PubMed  Google Scholar 

  15. Edmondstone WM, Wilson AG . Sarcoidosis in Caucasians, Blacks and Asians in London. Br J Dis Chest 1985; 79: 27–36.

    Article  CAS  PubMed  Google Scholar 

  16. Shriver MD, Parra EJ, Dios S, Bonilla C, Norton H, Jovel C et al. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet 2003; 112: 387–399.

    PubMed  Google Scholar 

  17. Judson MA, Baughman RP, Thompson BW, Teirstein AS, Terrin ML, Rossman MD et al. Two year prognosis of sarcoidosis: the ACCESS experience. Sarcoidosis Vasc Diffuse Lung Dis 2003; 20: 204–211.

    PubMed  Google Scholar 

  18. Smith MW, Patterson N, Lautenberger JA, Truelove AL, McDonald GJ, Waliszewska A et al. A high-density admixture map for disease gene discovery in African Americans. Am J Hum Genet 2004; 74: 1001–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tian C, Hinds DA, Shigeta R, Kittles R, Ballinger DG, Seldin MF . A genome-wide single-nucleotide-polymorphism panel with high ancestry information for African American admixture mapping. Am J Hum Genet 2006; 79: 640–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Terwilliger JD, Weiss KM . Linkage disequilibrium mapping of complex disease: fantasy or reality? Curr Opin Biotechnol 1998; 9: 578–594.

    Article  CAS  PubMed  Google Scholar 

  21. Freedman ML, Haiman CA, Patterson N, McDonald GJ, Tandon A, Waliszewska A et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc Natl Acad Sci USA 2006; 103: 14068–14073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 2008; 40: 1175–1184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scherer ML, Nalls MA, Pawlikowska L, Ziv E, Mitchell GF, Huntsman S et al. Admixture mapping of ankle-arm index: identification of a candidate locus associated with peripheral arterial disease. J Med Genet 2009; 47: 1–7.

    Article  PubMed  Google Scholar 

  24. Elbein SC, Das SK, Hallman DM, Hanis CL, Hasstedt SJ . Genome-wide linkage and admixture mapping of type 2 diabetes in African American families from the American Diabetes Association GENNID (Genetics of NIDDM) Study Cohort. Diabetes 2009; 58: 268–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Basu A, Tang H, Arnett D, Gu CC, Mosley T, Kardia S et al. Admixture mapping of quantitative trait loci for BMI in African Americans: evidence for loci on chromosomes 3q, 5q, and 15q. Obesity (Silver Spring) 2009; 17: 1226–1231.

    CAS  Google Scholar 

  26. Cheng CY, Kao WH, Patterson N, Tandon A, Haiman CA, Harris TB et al. Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X. PLoS Genet 2009; 5: e1000490.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reich D, Patterson N, Ramesh V, De Jager PL, McDonald GJ, Tandon A et al. Admixture mapping of an allele affecting interleukin 6 soluble receptor and interleukin 6 levels. Am J Hum Genet 2007; 80: 716–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Basu A, Tang H, Lewis CE, North K, Curb JD, Quertermous T et al. Admixture mapping of quantitative trait loci for blood lipids in African-Americans. Hum Mol Genet 2009; 18: 2091–2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoggart CJ, Shriver MD, Kittles RA, Clayton DG, McKeigue PM . Design and analysis of admixture mapping studies. Am J Hum Genet 2004; 74: 965–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA, Oksenberg JR et al. Methods for high-density admixture mapping of disease genes. Am J Hum Genet 2004; 74: 979–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schurmann M, Reichel P, Muller-Myhsok B, Schlaak M, Muller-Quernheim J, Schwinger E . Results from a genome-wide search for predisposing genes in sarcoidosis. Am J Respir Crit Care Med 2001; 164: 840–846.

    Article  CAS  PubMed  Google Scholar 

  32. Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet 2007; 3: e58.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Onnie C, Fisher SA, King K, Mirza M, Roberts R, Forbes A et al. Sequence variation, linkage disequilibrium and association with Crohn's disease on chromosome 5q31. Genes Immun 2006; 7: 359–365.

    Article  CAS  PubMed  Google Scholar 

  34. Chang M, Li Y, Yan C, Callis-Duffin KP, Matsunami N, Garcia VE et al. Variants in the 5q31 cytokine gene cluster are associated with psoriasis. Genes Immun 2008; 9: 176–181.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Chang M, Schrodi SJ, Callis-Duffin KP, Matsunami N, Civello D et al. The 5q31 variants associated with psoriasis and Crohn's disease are distinct. Hum Mol Genet 2008; 17: 2978–2985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rossman MD, Thompson B, Frederick M, Maliarik M, Iannuzzi MC, Rybicki BA et al. HLA-DRB1*1101: a significant risk factor for sarcoidosis in blacks and whites. Am J Hum Genet 2003; 73: 720–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sato H, Grutters JC, Pantelidis P, Mizzon AN, Ahmad T, van Houte AJ et al. HLA-DQB1*0201: a marker for good prognosis in British and Dutch patients with sarcoidosis. Am J Respir Cell Mol Biol 2002; 27: 406–412.

    Article  CAS  PubMed  Google Scholar 

  38. Iannuzzi MC, Maliarik MJ, Poisson LM, Rybicki BA . Sarcoidosis susceptibility and resistance HLA-DQB1 alleles in African Americans. Am J Respir Crit Care Med 2003; 167: 1225–1231.

    Article  PubMed  Google Scholar 

  39. Voorter CE, Drent M, van den Berg-Loonen EM . Severe pulmonary sarcoidosis is strongly associated with the haplotype HLA-DQB1*0602-DRB1*150101. Hum Immunol 2005; 66: 826–835.

    Article  CAS  PubMed  Google Scholar 

  40. Cao K, Moormann AM, Lyke KE, Masaberg C, Sumba OP, Doumbo OK et al. Differentiation between African populations is evidenced by the diversity of alleles and haplotypes of HLA class I loci. Tissue Antigens 2004; 63: 293–325.

    Article  CAS  PubMed  Google Scholar 

  41. Lazarus R, Vercelli D, Palmer LJ, Klimecki WJ, Silverman EK, Richter B et al. Single nucleotide polymorphisms in innate immunity genes: abundant variation and potential role in complex human disease. Immunol Rev 2002; 190: 9–25.

    Article  CAS  PubMed  Google Scholar 

  42. Lind JM, Hutcheson-Dilks HB, Williams SM, Moore JH, Essex M, Ruiz-Pesini E et al. Elevated male European and female African contributions to the genomes of African American individuals. Hum Genet 2007; 120: 713–722.

    Article  PubMed  Google Scholar 

  43. Parra EJ, Marcini A, Akey J, Martinson J, Batzer MA, Cooper R et al. Estimating African American admixture proportions by use of population-specific alleles. Am J Hum Genet 1998; 63: 1839–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Foreman MG, Mannino DM, Kamugisha L, Westney GE . Hospitalization for patients with sarcoidosis: 1979–2000. Sarcoidosis Vasc Diffuse Lung Dis 2006; 23: 124–129.

    PubMed  Google Scholar 

  45. Burke RR, Stone CH, Havstad S, Rybicki BA . Racial differences in sarcoidosis granuloma density. Lung 2009; 187: 1–7.

    Article  PubMed  Google Scholar 

  46. Falconer DS . The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann Hum Genet 1965; 29: 51–76.

    Article  Google Scholar 

  47. Rybicki BA, Kirkey KL, Major M, Maliarik MJ, Popovich J, Chase Jr GA et al. Familial risk ratio of sarcoidosis in African-American sibs and parents. Am J Epidemiol 2001; 153: 188–193.

    Article  CAS  PubMed  Google Scholar 

  48. Rybicki BA, Iannuzzi MC, Frederick MM, Thompson BW, Rossman MD, Bresnitz EA et al. Familial aggregation of sarcoidosis. A case-control etiologic study of sarcoidosis (ACCESS). Am J Respir Crit Care Med 2001; 164: 2085–2091.

    Article  CAS  PubMed  Google Scholar 

  49. McDougal KE, Fallin MD, Moller DR, Song Z, Cutler DJ, Steiner LL et al. Variation in the lymphotoxin-alpha/tumor necrosis factor locus modifies risk of erythema nodosum in sarcoidosis. J Invest Dermatol 2009; 129: 1921–1926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fischer A, Valentonyte R, Nebel A, Nothnagel M, Muller-Quernheim J, Schurmann M et al. Female-specific association of C-C chemokine receptor 5 gene polymorphisms with Lofgren's syndrome. J Mol Med 2008; 86: 553–561.

    Article  CAS  PubMed  Google Scholar 

  51. Furuya K, Yamaguchi E, Itoh A, Hizawa N, Ohnuma N, Kojima J et al. Deletion polymorphism in the angiotensin I converting enzyme (ACE) gene as a genetic risk factor for sarcoidosis. Thorax 1996; 51: 777–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kruit A, Ruven HJ, Grutters JC, Van Den Bosch JM . Angiotensin-converting enzyme 2 (ACE2) haplotypes are associated with pulmonary disease phenotypes in sarcoidosis patients. Sarcoidosis Vasc Diffuse Lung Dis 2005; 22: 195–203.

    PubMed  Google Scholar 

  53. Gleicher N, Barad DH . Gender as risk factor for autoimmune diseases. J Autoimmun 2007; 28: 1–6.

    Article  CAS  PubMed  Google Scholar 

  54. Berlin M, Fogdell-Hahn A, Olerup O, Eklund A, Grunewald J . HLA-DR predicts the prognosis in Scandinavian patients with pulmonary sarcoidosis. Am J Respir Crit Care Med 1997; 156: 1601–1605.

    Article  CAS  PubMed  Google Scholar 

  55. Grunewald J, Eklund A, Olerup O . Human leukocyte antigen class I alleles and the disease course in sarcoidosis patients. Am J Respir Crit Care Med 2004; 169: 696–702.

    Article  PubMed  Google Scholar 

  56. Johns CJ, Schonfeld SA, Scott PP, Zachary JB, MacGregor MI . Longitudinal study of chronic sarcoidosis with low-dose maintenance corticosteroid therapy. Outcome and complications. Ann N Y Acad Sci 1986; 465: 702–712.

    Article  CAS  PubMed  Google Scholar 

  57. Franke A, Fischer A, Nothnagel M, Becker C, Grabe N, Till A et al. Genome-wide association analysis in sarcoidosis and Crohn's disease unravels a common susceptibility locus on 10p12.2. Gastroenterology 2008; 135: 1207–1215.

    Article  CAS  PubMed  Google Scholar 

  58. ACCESS Group. Design of a case control etiologic study of sarcoidosis (ACCESS) ACCESS Research Group. J Clin Epidemiol 1999; 52: 1173–1186.

    Article  Google Scholar 

  59. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449: 851–861.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We recognize the contributions of the NHLBI-funded ACCESS and SAGA research groups in original data collection efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A Rybicki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybicki, B., Levin, A., McKeigue, P. et al. A genome-wide admixture scan for ancestry-linked genes predisposing to sarcoidosis in African-Americans. Genes Immun 12, 67–77 (2011). https://doi.org/10.1038/gene.2010.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.56

Keywords

This article is cited by

Search

Quick links