Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide association identifies SKIV2L and MYRIP as protective factors for age-related macular degeneration

Abstract

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly in the developed world. We conducted a genome-wide association study in a series of families enriched for AMD and completed a meta-analysis of this new data with results from reanalysis of an existing study of a late-stage case–control cohort. We tested the top findings for replication in 1896 cases and 1866 controls and identified two novel genetic protective factors for AMD. In addition to the complement factor H (CFH) (P=2.3 × 10−64) and age-related maculopathy susceptibility 2 (ARMS2) (P=1.2 × 10−60) loci, we observed a protective effect at rs429608, an intronic SNP in SKIV2L (P=5.3 × 10−15), a gene near the complement component 2 (C2)/complement factor B (BF) locus, that indicates the protective effect may be mediated by variants other than the C2/BF variants previously studied. Haplotype analysis at this locus identified three protective haplotypes defined by the rs429608 protective allele. We also identified a new potentially protective effect at rs2679798 in MYRIP (P=2.9 × 10−4), a gene involved in retinal pigment epithelium melanosome trafficking. Interestingly, MYRIP was initially identified in the family-based scan and was confirmed in the case–control set. From these efforts, we report the identification of two novel protective factors for AMD and confirm the previously known associations at CFH, ARMS2 and C3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Klein R, Klein BE, Knudtson MD, Meuer SM, Swift M, Gangnon RE . Fifteen-year cumulative incidence of age-related macular degeneration: the Beaver Dam Eye Study. Ophthalmology 2007; 114: 253–262.

    PubMed  Google Scholar 

  2. Klein R, Klein BE, Tomany SC, Meuer SM, Huang GH . Ten-year incidence and progression of age-related maculopathy: the Beaver Dam eye study. Ophthalmology 2002; 109: 1767–1779.

    PubMed  Google Scholar 

  3. Mitchell P, Wang JJ, Foran S, Smith W . Five-year incidence of age-related maculopathy lesions: the Blue Mountains Eye Study. Ophthalmology 2002; 109: 1092–1097.

    PubMed  Google Scholar 

  4. Wang JJ, Rochtchina E, Lee AJ, Chia EM, Smith W, Cumming RG et al. Ten-year incidence and progression of age-related maculopathy: the blue Mountains Eye Study. Ophthalmology 2007; 114: 92–98.

    PubMed  Google Scholar 

  5. Peeters A, Magliano DJ, Stevens J, Duncan BB, Klein R, Wong TY . Changes in abdominal obesity and age-related macular degeneration: the atherosclerosis risk in communities study. Arch Ophthalmol 2008; 126: 1554–1560.

    PubMed  PubMed Central  Google Scholar 

  6. Seddon JM, Cote J, Davis N, Rosner B . Progression of age-related macular degeneration: association with body mass index, waist circumference, and waist-hip ratio. Arch Ophthalmol 2003; 121: 785–792.

    PubMed  Google Scholar 

  7. Edwards AO, Ritter III R, Abel KJ, Manning A, Panhuysen C, Farrer LA . Complement factor H polymorphism and age-related macular degeneration. Science 2005; 308: 421–424.

    Article  CAS  PubMed  Google Scholar 

  8. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 2005; 308: 419–421.

    CAS  PubMed  Google Scholar 

  9. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005; 308: 385–389.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li M, Atmaca-Sonmez P, Othman M, Branham KE, Khanna R, Wade MS et al. CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration. Nat Genet 2006; 38: 1049–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 2006; 38: 458–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. McKay GJ, Silvestri G, Patterson CC, Hogg RE, Chakravarthy U, Hughes AE . Further assessment of the complement component 2 and factor B region associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 2009; 50: 533–539.

    PubMed  Google Scholar 

  13. Spencer KL, Hauser MA, Olson LM, Schmidt S, Scott WK, Gallins P et al. Protective effect of complement factor B and complement component 2 variants in age-related macular degeneration. Hum Mol Genet 2007; 16: 1986–1992.

    CAS  PubMed  Google Scholar 

  14. Yates JR, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H et al. Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 2007; 357: 553–561.

    CAS  PubMed  Google Scholar 

  15. Dewan A, Liu M, Hartman S, Zhang SS, Liu DT, Zhao C et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 2006; 314: 989–992.

    CAS  PubMed  Google Scholar 

  16. Jakobsdottir J, Conley YP, Weeks DE, Mah TS, Ferrell RE, Gorin MB . Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet 2005; 77: 389–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanda A, Chen W, Othman M, Branham KE, Brooks M, Khanna R et al. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci USA 2007; 104: 16227–16232.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, Meitinger T et al. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 2005; 14: 3227–3236.

    CAS  PubMed  Google Scholar 

  19. Yang Z, Camp NJ, Sun H, Tong Z, Gibbs D, Cameron DJ et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 2006; 314: 992–993.

    CAS  PubMed  Google Scholar 

  20. Fritsche LG, Loenhardt T, Janssen A, Fisher SA, Rivera A, Keilhauer CN et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet 2008; 40: 892–896.

    CAS  PubMed  Google Scholar 

  21. SanGiovanni JP, Arking DE, Iyengar SK, Elashoff M, Clemons TE, Reed GF et al. Mitochondrial DNA variants of respiratory complex I that uniquely characterize haplogroup T2 are associated with increased risk of age-related macular degeneration. PLoS ONE 2009; 4: e5508.

    PubMed  PubMed Central  Google Scholar 

  22. Canter JA, Olson LM, Spencer K, Schnetz-Boutaud N, Anderson B, Hauser MA et al. Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration. PLoS ONE 2008; 3: e2091.

    PubMed  PubMed Central  Google Scholar 

  23. Mullins RF, Russell SR, Anderson DH, Hageman GS . Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 2000; 14: 835–846.

    CAS  PubMed  Google Scholar 

  24. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 2005; 102: 7227–7232.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zipfel PF, Hallstrom T, Hammerschmidt S, Skerka C . The complement fitness factor H: role in human diseases and for immune escape of pathogens, like pneumococci. Vaccine 2008; 26 (Suppl 8): I67–I74.

    CAS  PubMed  Google Scholar 

  26. Coffey PJ, Gias C, McDermott CJ, Lundh P, Pickering MC, Sethi C et al. Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction. Proc Natl Acad Sci USA 2007; 104: 16651–16656.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42: 105–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009; 41: 56–65.

    CAS  PubMed  Google Scholar 

  29. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 2009; 41: 666–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cupples LA, Arruda HT, Benjamin EJ, D’Agostino Sr RB, Demissie S, DeStefano AL et al. The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports. BMC Med Genet 2007; 8 (Suppl 1): S1.

    PubMed  PubMed Central  Google Scholar 

  31. Maller J, George S, Purcell S, Fagerness J, Altshuler D, Daly MJ et al. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 2006; 38: 1055–1059.

    CAS  PubMed  Google Scholar 

  32. El-Amraoui A, Schonn JS, Kussel-Andermann P, Blanchard S, Desnos C, Henry JP et al. MyRIP, a novel Rab effector, enables myosin VIIa recruitment to retinal melanosomes. EMBO Rep 2002; 3: 463–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Klomp AE, Teofilo K, Legacki E, Williams DS . Analysis of the linkage of MYRIP and MYO7A to melanosomes by RAB27A in retinal pigment epithelial cells. Cell Motil Cytoskeleton 2007; 64: 474–487.

    CAS  PubMed  Google Scholar 

  34. Augustin I, Rosenmund C, Sudhof TC, Brose N . Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 1999; 400: 457–461.

    CAS  PubMed  Google Scholar 

  35. Augustin I, Korte S, Rickmann M, Kretzschmar HA, Sudhof TC, Herms JW et al. The cerebellum-specific Munc13 isoform Munc13-3 regulates cerebellar synaptic transmission and motor learning in mice. J Neurosci 2001; 21: 10–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Iyengar SK, Song D, Klein BE, Klein R, Schick JH, Humphrey J et al. Dissection of genome-wide-scan data in extended families reveals a major locus and oligogenic susceptibility for age-related macular degeneration. Am J Hum Genet 2004; 74: 20–39.

    CAS  PubMed  Google Scholar 

  37. Schraermeyer U, Heimann K . Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 1999; 12: 219–236.

    CAS  PubMed  Google Scholar 

  38. Bergmann M, Schutt F, Holz FG, Kopitz J . Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 2004; 18: 562–564.

    CAS  PubMed  Google Scholar 

  39. Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE et al. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 1999; 40: 737–743.

    CAS  PubMed  Google Scholar 

  40. Guo Y, Yao G, Lei B, Tan J . Monte Carlo model for studying the effects of melanin concentrations on retina light absorption. J Opt Soc Am A Opt Image Sci Vis 2008; 25: 304–311.

    PubMed  Google Scholar 

  41. El-Amraoui A, Sahly I, Picaud S, Sahel J, Abitbol M, Petit C . Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Hum Mol Genet 1996; 5: 1171–1178.

    CAS  PubMed  Google Scholar 

  42. Weil D, Levy G, Sahly I, Levi-Acobas F, Blanchard S, El-Amraoui A et al. Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc Natl Acad Sci USA 1996; 93: 3232–3237.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 1995; 374: 60–61.

    CAS  PubMed  Google Scholar 

  44. Hasson T, Heintzelman MB, Santos-Sacchi J, Corey DP, Mooseker MS . Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci USA 1995; 92: 9815–9819.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lopes VS, Ramalho JS, Owen DM, Karl MO, Strauss O, Futter CE et al. The ternary Rab27a-Myrip-Myosin VIIa complex regulates melanosome motility in the retinal pigment epithelium. Traffic 2007; 8: 486–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuroda TS, Fukuda M . Identification and biochemical analysis of Slac2-c/MyRIP as a Rab27A-, myosin Va/VIIa-, and actin-binding protein. Methods Enzymol 2005; 403: 431–444.

    CAS  PubMed  Google Scholar 

  47. Ramalho JS, Lopes VS, Tarafder AK, Seabra MC, Hume AN . Myrip uses distinct domains in the cellular activation of myosin VA and myosin VIIA in melanosome transport. Pigment Cell Melanoma Res 2009; 22: 461–473.

    CAS  PubMed  Google Scholar 

  48. Gibbs D, Kitamoto J, Williams DS . Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc Natl Acad Sci USA 2003; 100: 6481–6486.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schonthaler HB, Lampert JM, von Lintig J, Schwarz H, Geisler R, Neuhauss SC . A mutation in the silver gene leads to defects in melanosome biogenesis and alterations in the visual system in the zebrafish mutant fading vision. Dev Biol 2005; 284: 421–436.

    CAS  PubMed  Google Scholar 

  50. Schraermeyer U, Peters S, Thumann G, Kociok N, Heimann K . Melanin granules of retinal pigment epithelium are connected with the lysosomal degradation pathway. Exp Eye Res 1999; 68: 237–245.

    CAS  PubMed  Google Scholar 

  51. Warburton S, Davis WE, Southwick K, Xin H, Woolley AT, Burton GF et al. Proteomic and phototoxic characterization of melanolipofuscin: correlation to disease and model for its origin. Mol Vis 2007; 13: 318–329.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee SG, Lee I, Park SH, Kang C, Song K . Identification and characterization of a human cDNA homologous to yeast SKI2. Genomics 1995; 25: 660–666.

    CAS  PubMed  Google Scholar 

  53. Schmid M, Jensen TH . The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci 2008; 33: 501–510.

    CAS  PubMed  Google Scholar 

  54. Bernstein KA, Granneman S, Lee AV, Manickam S, Baserga SJ . Comprehensive mutational analysis of yeast DEXD/H box RNA helicases involved in large ribosomal subunit biogenesis. Mol Cell Biol 2006; 26: 1195–1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang Z, Qu X, Yu CY . Features of the two gene pairs RD-SKI2W and DOM3Z-RP1 located between complement component genes factor B and C4 at the MHC class III region. Front Biosci 2001; 6: D927–D935.

    CAS  PubMed  Google Scholar 

  56. Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 2001; 107: 451–464.

    CAS  PubMed  Google Scholar 

  57. Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH . Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS ONE 2009; 4: e4160.

    PubMed  PubMed Central  Google Scholar 

  58. Kondo N, Honda S, Kuno SI, Negi A . Role of RDBP and SKIV2 L variants in the major histocompatibility complex class III region in polypoidal choroidal vasculopathy etiology. Ophthalmology 2009; 116: 1502–1509.

    PubMed  Google Scholar 

  59. Fernando MM, Stevens CR, Sabeti PC, Walsh EC, McWhinnie AJ, Shah A et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet 2007; 3: e192.

    PubMed  PubMed Central  Google Scholar 

  60. Edwards AO, Fridley BL, James KM, Sharma AK, Cunningham JM, Tosakulwong N . Evaluation of clustering and genotype distribution for replication in genome-wide association studies: the age-related eye disease study. PLoS One 2008; 3: e3813.

    PubMed  PubMed Central  Google Scholar 

  61. Zhang H, Morrison MA, Dewan A, Adams S, Andreoli M, Huynh N et al. The NEI/NCBI dbGAP database: genotypes and haplotypes that may specifically predispose to risk of neovascular age-related macular degeneration. BMC Med Genet 2008; 9: 51.

    PubMed  PubMed Central  Google Scholar 

  62. Klein R, Knudtson MD, Klein BE, Wong TY, Cotch MF, Liu K et al. Inflammation, complement factor h, and age-related macular degeneration: the multi-ethnic Study of Atherosclerosis. Ophthalmology 2008; 115: 1742–1749.

    PubMed  Google Scholar 

  63. Tedeschi-Blok N, Buckley J, Varma R, Triche TJ, Hinton DR . Population-based study of early age-related macular degeneration: role of the complement factor H Y402H polymorphism in bilateral but not unilateral disease. Ophthalmology 2007; 114: 99–103.

    PubMed  Google Scholar 

  64. Grassi MA, Fingert JH, Scheetz TE, Roos BR, Ritch R, West SK et al. Ethnic variation in AMD-associated complement factor H polymorphism p.Tyr402His. Hum Mutat 2006; 27: 921–925.

    CAS  PubMed  Google Scholar 

  65. Chu J, Zhou CC, Lu N, Zhang X, Dong FT . Genetic variants in three genes and smoking show strong associations with susceptibility to exudative age-related macular degeneration in a Chinese population. Chin Med J (Engl) 2008; 121: 2525–2533.

    Google Scholar 

  66. Xu Y, Guan N, Xu J, Yang X, Ma K, Zhou H et al. Association of CFH, LOC387715, and HTRA1 polymorphisms with exudative age-related macular degeneration in a northern Chinese population. Mol Vis 2008; 14: 1373–1381.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang G, Spencer KL, Scott WK, Whitehead P, Court BL, Ayala-Haedo J et al. Analysis of the indel at the ARMS2 3′UTR in age-related macular degeneration. Hum Genet 2010; 127: 595–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Orlin A, Hadley D, Brown G, Brucker A, Ho A, Regillo C et al. The relationship between the A69S variant with the indel (372_815delins54) in the ARMS2 gene, and its association with age-related macular degeneration. Invest Ophthalmol Vis Sci 2009; 50: E-Abstract 1601.

  69. Yang Z, Tong Z, Chen Y, Zeng J, Lu F, Sun X et al. Genetic and functional dissection of HTRA1 and LOC387715 in age-related macular degeneration. PLoS Genet 2010; 6: e1000836.

    PubMed  PubMed Central  Google Scholar 

  70. Fei H, Grygoruk A, Brooks ES, Chen A, Krantz DE . Trafficking of vesicular neurotransmitter transporters. Traffic 2008; 9: 1425–1436.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Newell-Litwa K, Seong E, Burmeister M, Faundez V . Neuronal and non-neuronal functions of the AP-3 sorting machinery. J Cell Sci 2007; 120 (Part 4): 531–541.

    CAS  PubMed  Google Scholar 

  72. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet 2007; 39: 1181–1186.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Age Related Eye Disease Study Group. Risk factors associated with age-related macular degeneration. A case–control study in the age-related eye disease study: age-related eye disease study report number 3. Ophthalmology 2000; 107: 2224–2232.

    Google Scholar 

  74. Ferris FL, Davis MD, Clemons TE, Lee LY, Chew EY, Lindblad AS et al. A simplified severity scale for age-related macular degeneration: AREDS report no. 18. Arch Ophthalmol 2005; 123: 1570–1574.

    PubMed  Google Scholar 

  75. Klein R, Klein BE, Jensen SC, Meuer SM . The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 1997; 104: 7–21.

    CAS  PubMed  Google Scholar 

  76. Klein R, Klein BE, Linton KL . Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 1992; 99: 933–943.

    CAS  PubMed  Google Scholar 

  77. S.A.G.E. Statistical Analysis for Genetic Epidemiology 2007. http://genepi.cwru.edu.

  78. Marchini J, Howie B, Myers S, McVean G, Donnelly P . A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 2007; 39: 906–913.

    CAS  PubMed  Google Scholar 

  79. Devlin B, Roeder K . Genomic control for association studies. Biometrics 1999; 55: 997–1004.

    CAS  PubMed  Google Scholar 

  80. Purcell S . PLINK 2008. http://pngu.mgh.harvard.edu/purcell/plink.

  81. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li Y, Abecasis GR . MaCH 1.0: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet 2006; S79: 2290.

    Google Scholar 

  83. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Stephens M, Scheet P . Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 2005; 76: 449–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Schaid DJ . Evaluating associations of haplotypes with traits. Genet Epidemiol 2004; 27: 348–364.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the NIH grants EY015810, U10EY06594, EY015286, EY13438 and EY10605 from the National Eye Institute, training grant T32 EY07157 to the Visual Sciences Training Program and T32 GM07250 to the Case Medical Scientist Training Program; US Public Health Service research grants GM28356, from the National Institute of General Medical Sciences; and by Senior Scientific Investigator Awards from Research to Prevent Blindness (Dr R Klein and Dr B Klein), The Foundation Fighting Blindness, Columbia, MD (Dr PJ Francis); the Macular Degeneration Center Research Fund and the Goodall Macular Degeneration Fund, Casey Eye Institute (Dr ML Klein), Research to Prevent Blindness, New York, NY (unrestricted grants to Casey Eye Institute and a Career Development Award to Dr PJ Francis) and unrestricted awards from Research to Prevent Blindness (Department of Ophthalmology, Case Western Reserve University (CWRU) School of Medicine and Cleveland Clinic Lerner College of Medicine of CWRU), a VA Merit Review and a Center Grant from Foundation Fighting Blindness. This study was also supported by the Gene Expression and Genotyping Facility of the Comprehensive Cancer Center at CWRU and University Hospitals of Cleveland (P30CA43703) and the Genotyping Core Facility at CWRU. The results of this paper were obtained by using the software package S.A.G.E., which is supported by a US Public Health Service Resource Grant (RR03655) from the National Center for Research Resources. This publication was made possible by the CWRU/Cleveland Clinic CTSA Grant Number UL1 RR024989 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health and NIH roadmap for Medical Research. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NCRR or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Iyengar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopplin, L., Igo, R., Wang, Y. et al. Genome-wide association identifies SKIV2L and MYRIP as protective factors for age-related macular degeneration. Genes Immun 11, 609–621 (2010). https://doi.org/10.1038/gene.2010.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.39

Keywords

This article is cited by

Search

Quick links