Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

HIV-1 immunopathogenesis in humanized mouse models

Abstract

In recent years, the technology of constructing chimeric mice with humanized immune systems has markedly improved. Multiple lineages of human immune cells develop in immunodeficient mice that have been transplanted with human hematopoietic stem cells. More importantly, these mice mount functional humoral and cellular immune responses upon immunization or microbial infection. Human immunodeficiency virus type I (HIV-1) can establish an infection in humanized mice, resulting in CD4+ T-cell depletion and an accompanying nonspecific immune activation, which mimics the immunopathology in HIV-1-infected human patients. This makes humanized mice an optimal model for studying the mechanisms of HIV-1 immunopathogenesis and for developing novel immune-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. United Nations Programme on HIV/AIDS. Global Facts & Figures [PDF on Internet], 2009. Available from: http://data.unaids.org/pub/factsheet/2009/20091124_fs_global_en.pdf. Accessed date 15 Sep 2012.

  2. Ganick DJ, Sarnwick RD, Shahidi NT, Manning DD . Inability of intravenously injected monocellular suspensions of human bone marrow to establish in the nude mouse. Int Arch Allergy Appl Immunol 1980; 62: 330–333.

    CAS  PubMed  Google Scholar 

  3. Bosma GC, Custer RP, Bosma MJ . A severe combined immunodeficiency mutation in the mouse. Nature 1983; 301: 527–530.

    CAS  PubMed  Google Scholar 

  4. Mosier DE, Gulizia RJ, Baird SM, Wilson DB . Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259.

    CAS  PubMed  Google Scholar 

  5. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL . The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632–1639.

    CAS  PubMed  Google Scholar 

  6. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191.

    CAS  PubMed  Google Scholar 

  7. Hesselton RM, Greiner DL, Mordes JP, Rajan TV, Sullivan JL, Shultz LD . High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Infect Dis 1995; 172: 974–982.

    CAS  PubMed  Google Scholar 

  8. Pflumio F, Izac B, Katz A, Shultz LD, Vainchenker W, Coulombel L . Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood 1996; 88: 3731–3740.

    CAS  PubMed  Google Scholar 

  9. Yoshino H, Ueda T, Kawahata M, Kobayashi K, Ebihara Y, Manabe A et al. Natural killer cell depletion by anti-asialo GM1 antiserum treatment enhances human hematopoietic stem cell engraftment in NOD/Shi-scid mice. Bone Marrow Transplant 2000; 26: 1211–1216.

    CAS  PubMed  Google Scholar 

  10. Ito M, Kobayashi K, Nakahata T . NOD/Shi-scid IL2rγnull (NOG) mice more appropriate for humanized mouse models. Curr Top Microbiol Immunol 2008; 324: 53–76.

    CAS  PubMed  Google Scholar 

  11. Shultz LD, Ishikawa F, Greiner DL . Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7: 118–130.

    CAS  PubMed  Google Scholar 

  12. Chen Q, Khoury M, Chen J . Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA 2009; 106: 21783–2178.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci USA 2011; 108: 2390–2395.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci USA 2011; 108: 2378–2383.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Whitfield-Larry F, Young EF, Talmage G, Fudge E, Azam A, Patel S et al. HLA-A2-matched peripheral blood mononuclear cells from type 1 diabetic patients, but not nondiabetic donors, transfer insulitis to NOD-scid/γcnull/HLA-A2 transgenic mice concurrent with the expansion of islet-specific CD8+ T cells. Diabetes 2011; 60: 1726–1733.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W et al. Transgenic expression of human signal regulatory protein alpha in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci USA 2011; 108: 13218–13223.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K et al. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100: 3175–3182.

    CAS  PubMed  Google Scholar 

  18. Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 2004; 304: 104–107.

    CAS  PubMed  Google Scholar 

  19. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chainnull mice. Blood 2005; 106: 1565–1573.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R γnull mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174: 6477–6489.

    CAS  PubMed  Google Scholar 

  21. Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1null) interleukin (IL)-2 receptor common gamma chain (IL2r γnull) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 2008; 154: 270–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J et al. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/γc−/−, Balb/c-Rag1−/−γc−/−, and C.B-17-scid/bg immunodeficient mice. Hum Immunol 2009; 70: 790–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE . Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood 2010; 116: 193–200.

    CAS  PubMed  Google Scholar 

  24. Stoddart CA, Maidji E, Galkina SA, Kosikova G, Rivera JM, Moreno ME et al. Superior human leukocyte reconstitution and susceptibility to vaginal HIV transmission in humanized NOD-scid IL-2Rγ−/− (NSG) BLT mice. Virology 2011; 417: 154–160.

    CAS  PubMed  Google Scholar 

  25. Matozaki T, Murata Y, Okazawa H, Ohnishi H . Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol 2009; 19: 72–80.

    CAS  PubMed  Google Scholar 

  26. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol 2007; 8: 1313–1323.

    CAS  PubMed  Google Scholar 

  27. Brehm MA, Cuthbert A, Yang C, Miller DM, DiIorio P, Laning J et al. Parameters for establishing humanized mouse models to study human immunity: analysis of human hematopoietic stem cell engraftment in three immunodeficient strains of mice bearing the IL2rγnull mutation. Clin Immunol 2010; 135: 84–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R, Strick-Marchand H et al. Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci USA 2011; 108: 13224–13229.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. van Lent AU, Dontje W, Nagasawa M, Siamari R, Bakker AQ, Pouw SM et al. IL-7 enhances thymic human T cell development in “human immune system” Rag2−/−IL-2Rγ−/− mice without affecting peripheral T cell homeostasis. J Immunol 2009; 183: 7645–7655.

    CAS  PubMed  Google Scholar 

  30. Huntington ND, Legrand N, Alves NL, Jaron B, Weijer K, Plet A et al. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J Exp Med 2009; 206: 25–34.

    PubMed  Google Scholar 

  31. Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A . Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγnull humanized mice. Blood 2011; 117: 3076–3086.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA . Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 2011; 32: 321–327.

    CAS  PubMed  Google Scholar 

  33. Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, Yancopoulos GD et al. Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood 2011; 118: 3119–3128.

    CAS  PubMed  Google Scholar 

  34. Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J et al. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 2009; 206: 1423–1434.

    PubMed  PubMed Central  Google Scholar 

  35. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M et al. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2rγnull humanized mice. Proc Natl Acad Sci USA 2010; 107: 13022–13027.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, Rothman AL et al. Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rγnull mice. PLoS ONE 2009; 4: e7251.

    PubMed  PubMed Central  Google Scholar 

  37. Covassin L, Laning J, Abdi R, Langevin DL, Phillips NE, Shultz LD et al. Human peripheral blood CD4 T cell-engrafted non-obese diabetic-scid IL2rγnull H2-Ab1 (tm1Gru) Tg (human leucocyte antigen D-related 4) mice: a mouse model of human allogeneic graft-versus-host disease. Clin Exp Immunol 2011; 166: 269–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Danner R, Chaudhari SN, Rosenberger J, Surls J, Richie TL, Brumeanu TD et al. Expression of HLA class II molecules in humanized NOD.Rag1KO.IL2RgcKO mice is critical for development and function of human T and B cells. PLoS ONE 2011; 6: e19826.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 2006; 12: 1316–1322.

    CAS  PubMed  Google Scholar 

  40. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG . Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood 2006; 108: 487–492.

    CAS  PubMed  Google Scholar 

  41. Gimeno R, Weijer K, Voordouw A, Uittenbogaart CH, Legrand N, Alves NL et al. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2−/− γc−/− mice: functional inactivation of p53 in developing T cells. Blood 2004; 104: 3886–3893.

    CAS  PubMed  Google Scholar 

  42. Notta F, Doulatov S, Dick JE . Engraftment of human hematopoietic stem cells is more efficient in female NOD/SCID/IL-2Rgc-null recipients. Blood 2010; 115: 3704–3707.

    CAS  PubMed  Google Scholar 

  43. Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM . Infection of the SCID-hu mouse by HIV-1. Science 1988; 242: 1684–1686.

    CAS  PubMed  Google Scholar 

  44. McCune JM, Namikawa R, Shih CC, Rabin L, Kaneshima H . Suppression of HIV infection in AZT-treated SCID-hu mice. Science 1990; 247: 564–566.

    CAS  PubMed  Google Scholar 

  45. Stoddart CA, Nault G, Galkina SA, Bousquet-Gagnon N, Bridon D, Quraishi O . Preexposure prophylaxis with albumin-conjugated C34 peptide HIV-1 fusion inhibitor in SCID-hu Thy/Liv mice. Antimicrob Agents Chemother; e-pub ahead of print January 2012; doi: 10.1128/AAC.05015-11.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Stoddart CA, Joshi P, Sloan B, Bare JC, Smith PC, Allaway GP et al. Potent activity of the HIV-1 maturation inhibitor bevirimat in SCID-hu Thy/Liv mice. PLoS ONE 2007; 2: e1251.

    PubMed  PubMed Central  Google Scholar 

  47. Stoddart CA, Bales CA, Bare JC, Chkhenkeli G, Galkina SA, Kinkade AN et al. Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals. PLoS ONE 2007; 2: e655.

    PubMed  PubMed Central  Google Scholar 

  48. Zhang L, Kovalev GI, Su L . HIV-1 infection and pathogenesis in a novel humanized mouse model. Blood 2007; 109: 2978–2981.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Watanabe S, Terashima K, Ohta S, Horibata S, Yajima M, Shiozawa Y et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rγnull mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood 2007; 109: 212–218.

    CAS  PubMed  Google Scholar 

  50. Baenziger S, Tussiwand R, Schlaepfer E, Mazzucchelli L, Heikenwalder M, Kurrer MO et al. Disseminated and sustained HIV infection in CD34+ cord blood cell-transplanted Rag2−/−γc−/− mice. Proc Natl Acad Sci USA 2006; 103: 15951–15956.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Berges BK, Wheat WH, Palmer BE, Connick E, Akkina R . HIV-1 infection and CD4 T cell depletion in the humanized Rag2−/−γc−/− (RAG-hu) mouse model. Retrovirology 2006; 3: 76.

    PubMed  PubMed Central  Google Scholar 

  52. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 2009; 83: 7305–7321.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gorantla S, Sneller H, Walters L, Sharp JG, Pirruccello SJ, West JT et al. Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2−/−γc−/− mice. J Virol 2007; 81: 2700–2712.

    CAS  PubMed  Google Scholar 

  54. Jiang Q, Zhang L, Wang R, Jeffrey J, Washburn ML, Brouwer D et al. FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2−/−γC−/− mice in vivo. Blood 2008; 112: 2858–2868.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. An DS, Poon B, Ho Tsong Fang R, Weijer K, Blom B, Spits H et al. Use of a novel chimeric mouse model with a functionally active human immune system to study human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 2007; 14: 391–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK et al. Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 2007; 204: 705–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nie C, Sato K, Misawa N, Kitayama H, Fujino H, Hiramatsu H et al. Selective infection of CD4+ effector memory T lymphocytes leads to preferential depletion of memory T lymphocytes in R5 HIV-1-infected humanized NOD/SCID/IL-2Rγnull mice. Virology 2009; 394: 64–72.

    CAS  PubMed  Google Scholar 

  58. Ince WL, Zhang L, Jiang Q, Arrildt K, Su L, Swanstrom R . Evolution of the HIV-1 env gene in the Rag2−/−γC−/− humanized mouse model. J Virol 2010; 84: 2740–2752.

    CAS  PubMed  Google Scholar 

  59. Sato K, Izumi T, Misawa N, Kobayashi T, Yamashita Y, Ohmichi M et al. Remarkable lethal G-to-A mutations in vif-proficient HIV-1 provirus by individual APOBEC3 proteins in humanized mice. J Virol 2010; 84: 9546–9556.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sato K, Nie C, Misawa N, Tanaka Y, Ito M, Koyanagi Y . Dynamics of memory and naive CD8+ T lymphocytes in humanized NOD/SCID/IL-2Rγnull mice infected with CCR5-tropic HIV-1. Vaccine 2010; 2 8 (Suppl. 2): B32–B37.

    Google Scholar 

  61. Choudhary SK, Archin NM, Cheema M, Dahl NP, Garcia JV, Margolis DM . Latent HIV-1 infection of resting CD4 T cells in the humanized Rag2−/−γc−/− mouse. J Virol 2012; 86: 114–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, Swanson MD et al. Generation of HIV latency in humanized BLT mice. J Virol 2012; 86: 630–634.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Marsden MD, Kovochich M, Suree N, Shimizu S, Mehta R, Cortado R et al. HIV latency in the humanized BLT mouse. J Virol 2012; 86: 339–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Berges BK, Akkina SR, Folkvord JM, Connick E, Akkina R . Mucosal transmission of R5 and X4 tropic HIV-1 via vaginal and rectal routes in humanized Rag2−/−γc−/− (RAG-hu) mice. Virology 2008; 373: 342–351.

    CAS  PubMed  Google Scholar 

  65. Hofer U, Baenziger S, Heikenwalder M, Schlaepfer E, Gehre N, Regenass S et al. RAG2−/−γc−/− mice transplanted with CD34+ cells from human cord blood show low levels of intestinal engraftment and are resistant to rectal transmission of human immunodeficiency virus. J Virol 2008; 82: 12145–12153.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Neff CP, Ndolo T, Tandon A, Habu Y, Akkina R . Oral pre-exposure prophylaxis by anti-retrovirals raltegravir and maraviroc protects against HIV-1 vaginal transmission in a humanized mouse model. PLoS ONE 2010; 5: e15257.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Akkina R, Berges BK, Palmer BE, Remling L, Neff CP, Kuruvilla J et al. Humanized Rag1−/−γc−/− mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes. PLoS ONE 2011; 6: e20169.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, Fleming E et al. One percent tenofovir applied topically to humanized BLT mice and used according to the CAPRISA 004 experimental design demonstrates partial protection from vaginal HIV infection, validating the BLT model for evaluation of new microbicide candidates. J Virol 2011; 85: 7582–7593.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wheeler LA, Trifonova R, Vrbanac V, Basar E, McKernan S, Xu Z et al. Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest 2011; 121: 2401–2412.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, Wege AK et al. Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 2008; 5: e16.

    PubMed  PubMed Central  Google Scholar 

  71. Denton PW, Krisko JF, Powell DA, Mathias M, Kwak YT, Martinez-Torres F et al. Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PLoS ONE 2010; 5: e8829.

    PubMed  PubMed Central  Google Scholar 

  72. Hofer U, Schlaepfer E, Baenziger S, Nischang M, Regenass S, Schwendener R et al. Inadequate clearance of translocated bacterial products in HIV-infected humanized mice. PLoS Pathog 2010; 6: e1000867.

    PubMed  PubMed Central  Google Scholar 

  73. Zhang L, Jiang Q, Li G, Jeffrey J, Kovalev GI, Su L . Efficient infection, activation, and impairment of pDCs in the BM and peripheral lymphoid organs during early HIV-1 infection in humanized rag2/gamma C/mice in vivo. Blood 2011; 117: 6184–6192.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Long BR, Stoddart CA . Interferon alpha and HIV infection cause activation of human T cells in NSG-BLT mice. J Virol 2012; 86: 3327–3336.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Stoddart CA, Keir ME, McCune JM . IFN-alpha-induced upregulation of CCR5 leads to expanded HIV tropism in vivo. PLoS Pathog 2010; 6: e1000766.

    PubMed  PubMed Central  Google Scholar 

  76. Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, Makarov E et al. Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J Neurosci 2011; 31: 3148–3157.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gong N, Liu J, Reynolds AD, Gorantla S, Mosley RL, Gendelman HE . Brain ingress of regulatory T cells in a murine model of HIV-1 encephalitis. J Neuroimmunol 2011; 230: 33–41.

    CAS  PubMed  Google Scholar 

  78. Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL et al. Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am J Pathol 2010; 177: 2938–2949.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4+ T cell decline in humanized mice. Sci Transl Med 2011; 3: 66ra6.

    PubMed  PubMed Central  Google Scholar 

  80. Zhou J, Neff CP, Liu X, Zhang J, Li H, Smith DD et al. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 2011; 19: 2228–2238.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ter Brake O, Legrand N, von Eije KJ, Centlivre M, Spits H, Weijer K et al. Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2−/−γc−/− mouse model. Gene Ther 2009; 16: 148–153.

    CAS  PubMed  Google Scholar 

  82. Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008; 134: 577–586.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim SS, Peer D, Kumar P, Subramanya S, Wu H, Asthana D et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther 2010; 18: 370–376.

    CAS  PubMed  Google Scholar 

  84. Choudhary SK, Rezk NL, Ince WL, Cheema M, Zhang L, Su L et al. Suppression of human immunodeficiency virus type 1 (HIV-1) viremia with reverse transcriptase and integrase inhibitors, CD4+ T-cell recovery, and viral rebound upon interruption of therapy in a new model for HIV treatment in the humanized Rag2−/−γc−/− mouse. J Virol 2009; 83: 8254–8258.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sango K, Joseph A, Patel M, Osiecki K, Dutta M, Goldstein H . Highly active antiretroviral therapy potently suppresses HIV infection in humanized Rag2−/−γc−/− mice. AIDS Res Hum Retroviruses 2010; 26: 735–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. van Duyne R, Cardenas J, Easley R, Wu W, Kehn-Hall K, Klase Z et al. Effect of transcription peptide inhibitors on HIV-1 replication. Virology 2008; 376: 308–322.

    CAS  PubMed  Google Scholar 

  87. Shimizu S, Hong P, Arumugam B, Pokomo L, Boyer J, Koizumi N et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood 2010; 115: 1534–1544.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Joseph A, Zheng JH, Chen K, Dutta M, Chen C, Stiegler G et al. Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol 2010; 84: 6645–6653.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gorantla S, Makarov E, Finke-Dwyer J, Gebhart CL, Domm W, Dewhurst S et al. CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. J Immunol 2010; 184: 7082–7091.

    CAS  PubMed  Google Scholar 

  90. Meyaard L, Otto SA, Jonker RR, Mijnster MJ, Keet RP, Miedema F . Programmed death of T cells in HIV-1 infection. Science 1992; 257: 217–219.

    CAS  PubMed  Google Scholar 

  91. Finkel TH, Tudor-Williams G, Banda NK, Cotton MF, Curiel T, Monks C et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med 1995; 1: 129–134.

    CAS  PubMed  Google Scholar 

  92. Ascher MS, Sheppard HW . AIDS as immune system activation: a model for pathogenesis. Clin Exp Immunol 1988; 73: 165–167.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Sodora DL, Silvestri G . Immune activation and AIDS pathogenesis. AIDS 2008; 22: 439–446.

    PubMed  Google Scholar 

  94. Moir S, Buckner CM, Ho J, Wang W, Chen J, Waldner AJ et al. B cells in early and chronic HIV infection: evidence for preservation of immune function associated with early initiation of antiretroviral therapy. Blood 2010; 116: 5571–5579.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Giorgi JV, Liu Z, Hultin LE, Cumberland WG, Hennessey K, Detels R . Elevated levels of CD38+CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up. The Los Angeles Center, Multicenter AIDS Cohort Study. J Acquir Immune Defic Syndr 1993; 6: 904–912.

    CAS  PubMed  Google Scholar 

  96. Murray SM, Down CM, Boulware DR, Stauffer WM, Cavert WP, Schacker TW et al. Reduction of immune activation with chloroquine therapy during chronic HIV infection. J Virol 2010; 84: 12082–12086.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Piconi S, Parisotto S, Rizzardini G, Passerini S, Terzi R, Argenteri B et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood 2011; 118: 3263–3272.

    CAS  PubMed  Google Scholar 

  98. Sodora DL, Allan JS, Apetrei C, Brenchley JM, Douek DC, Else JG et al. Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts. Nat Med 2009; 15: 861–865.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Apetrei C, Sumpter B, Souquiere S, Chahroudi A, Makuwa M, Reed P et al. Immunovirological analyses of chronically SIVmnd-1- and SIVmnd-2-infected mandrills (Mandrillus sphinx). J Virol 2011; 85: 13077–13087.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Klatt NR, Canary LA, Vanderford TH, Vinton CL, Engram JC, Dunham RM et al. Dynamics of simian immunodeficiency virus SIVmac239 infection in pigtail macaques. J Virol 2012; 86: 1203–1213.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pandrea I, Gaufin T, Brenchley JM, Gautam R, Monjure C, Gautam A et al. Cutting edge: experimentally induced immune activation in natural hosts of simian immunodeficiency virus induces significant increases in viral replication and CD4+ T cell depletion. J Immunol 2008; 181: 6687–6691.

    CAS  PubMed  Google Scholar 

  102. Rotger M, Dalmau J, Rauch A, McLaren P, Bosinger SE, Martinez R et al. Comparative transcriptomics of extreme phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and rhesus macaque. J Clin Invest 2011; 121: 2391–2400.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tesselaar K, Arens R, van Schijndel GM, Baars PA, van der Valk MA, Borst J et al. Lethal T cell immunodeficiency induced by chronic costimulation via CD27–CD70 interactions. Nat Immunol 2003; 4: 49–54.

    CAS  PubMed  Google Scholar 

  104. Heikenwalder M, Polymenidou M, Junt T, Sigurdson C, Wagner H, Akira S et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat Med 2004; 10: 187–192.

    CAS  PubMed  Google Scholar 

  105. Baenziger S, Heikenwalder M, Johansen P, Schlaepfer E, Hofer U, Miller RC et al. Triggering TLR7 in mice induces immune activation and lymphoid system disruption, resembling HIV-mediated pathology. Blood 2009; 113: 377–388.

    CAS  PubMed  Google Scholar 

  106. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006; 12: 1365–1371.

    CAS  PubMed  Google Scholar 

  107. Holmes D, Jiang Q, Zhang L, Su L . Foxp3 and Treg cells in HIV-1 infection and immuno-pathogenesis. Immunol Res 2008; 41: 248–266.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Fazekas de St Groth B, Landay AL . Regulatory T cells in HIV infection: pathogenic or protective participants in the immune response? AIDS 2008; 22: 671–683.

    PubMed  Google Scholar 

  109. Skurkovich S, Skurkovich B, Bellanti JA . A disturbance of interferon synthesis with the hyperproduction of unusual kinds of interferon can trigger autoimmune disease and play a pathogenetic role in AIDS: the removal of these interferons can be therapeutic. Med Hypotheses 1993; 41: 177–185.

    CAS  PubMed  Google Scholar 

  110. Fitzgerald-Bocarsly P, Jacobs ES . Plasmacytoid dendritic cells in HIV infection: striking a delicate balance. J Leukoc Biol 2010; 87: 609–620.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Marchetti G, Cozzi-Lepri A, Merlini E, Bellistri GM, Castagna A, Galli M et al. Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4+ cell count. AIDS 2011; 25: 1385–1394.

    CAS  PubMed  Google Scholar 

  112. Liu YJ . IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005; 23: 275–306.

    CAS  PubMed  Google Scholar 

  113. Theofilopoulos AN, Baccala R, Beutler B, Kono DH . Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 2005; 23: 307–336.

    CAS  PubMed  Google Scholar 

  114. DeStefano E, Friedman RM, Friedman-Kien AE, Goedert JJ, Henriksen D, Preble OT et al. Acid-labile human leukocyte interferon in homosexual men with Kaposi's sarcoma and lymphadenopathy. J Infect Dis 1982; 146: 451–459.

    CAS  PubMed  Google Scholar 

  115. Buimovici-Klein E, Lange M, Klein RJ, Grieco MH, Cooper LZ . Long-term follow-up of serum-interferon and its acid-stability in a group of homosexual men. AIDS Res. 1986; 2: 99–108.

    CAS  PubMed  Google Scholar 

  116. Badolato R, Ghidini C, Facchetti F, Serana F, Sottini A, Chiarini M et al. Type I interferon-dependent gene MxA in perinatal HIV-infected patients under antiretroviral therapy as marker for therapy failure and blood plasmacytoid dendritic cells depletion. J Transl Med 2008; 6: 49.

    PubMed  PubMed Central  Google Scholar 

  117. Capobianchi MR, de Marco F, Di Marco P, Dianzani F . Acid-labile human interferon alpha production by peripheral blood mononuclear cells stimulated by HIV-infected cells. Arch Virol 1988; 99: 9–19.

    CAS  PubMed  Google Scholar 

  118. Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 2005; 115: 3265–3275.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Martinelli E, Cicala C, van Ryk D, Goode DJ, Macleod K, Arthos J et al. HIV-1 gp120 inhibits TLR9-mediated activation and IFN-α secretion in plasmacytoid dendritic cells. Proc Natl Acad Sci USA 2007; 104: 3396–3401.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Poli G, Orenstein JM, Kinter A, Folks TM, Fauci AS . Interferon-alpha but not AZT suppresses HIV expression in chronically infected cell lines. Science 1989; 244: 575–577.

    CAS  PubMed  Google Scholar 

  121. Baca-Regen L, Heinzinger N, Stevenson M, Gendelman HE . Alpha interferon-induced antiretroviral activities: restriction of viral nucleic acid synthesis and progeny virion production in human immunodeficiency virus type 1-infected monocytes. J Virol 1994; 68: 7559–7565.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Gurney KB, Colantonio AD, Blom B, Spits H, Uittenbogaart CH . Endogenous IFN-alpha production by plasmacytoid dendritic cells exerts an antiviral effect on thymic HIV-1 infection. J Immunol 2004; 173: 7269–7276.

    CAS  PubMed  Google Scholar 

  123. Donaghy H, Pozniak A, Gazzard B, Qazi N, Gilmour J, Gotch F et al. Loss of blood CD11c+ myeloid and CD11c plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood 2001; 98: 2574–2576.

    CAS  PubMed  Google Scholar 

  124. Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, Goujard C et al. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 2001; 98: 3016–3021.

    CAS  PubMed  Google Scholar 

  125. Soumelis V, Scott I, Gheyas F, Bouhour D, Cozon G, Cotte L et al. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 2001; 98: 906–912.

    CAS  PubMed  Google Scholar 

  126. Siegal FP, Lopez C, Fitzgerald PA, Shah K, Baron P, Leiderman IZ et al. Opportunistic infections in acquired immune deficiency syndrome result from synergistic defects of both the natural and adaptive components of cellular immunity. J Clin Invest 1986; 78: 115–123.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Feldman S, Stein D, Amrute S, Denny T, Garcia Z, Kloser P et al. Decreased interferon-alpha production in HIV-infected patients correlates with numerical and functional deficiencies in circulating type 2 dendritic cell precursors. Clin Immunol 2001; 101: 201–210.

    CAS  PubMed  Google Scholar 

  128. Lichtner M, Rossi R, Rizza MC, Mengoni F, Sauzullo I, Massetti AP et al. Plasmacytoid dendritic cells count in antiretroviral-treated patients is predictive of HIV load control independent of CD4+ T-cell count. Curr HIV Res 2008; 6: 19–27.

    CAS  PubMed  Google Scholar 

  129. Buimovici-Klein E, Lange M, Klein RJ, Cooper LZ, Grieco MH . Is presence of interferon predictive for AIDS? Lancet 1983; 2: 344.

    CAS  PubMed  Google Scholar 

  130. Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK, Kulkarni S et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med 2009; 15: 955–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bosinger SE, Li Q, Gordon SN, Klatt NR, Duan L, Xu L et al. Global genomic analysis reveals rapid control of a robust innate response in SIV-infected sooty mangabeys. J Clin Invest 2009; 119: 3556–3572.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Jacquelin B, Mayau V, Targat B, Liovat AS, Kunkel D, Petitjean G et al. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest 2009; 119: 3544–3555.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Harris LD, Tabb B, Sodora DL, Paiardini M, Klatt NR, Douek DC et al. Downregulation of robust acute type I interferon responses distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts from pathogenic SIV infection of rhesus macaques. J Virol 2010; 84: 7886–7891.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Campillo-Gimenez L, Laforge M, Fay M, Brussel A, Cumont MC, Monceaux V et al. Nonpathogenesis of simian immunodeficiency virus infection is associated with reduced inflammation and recruitment of plasmacytoid dendritic cells to lymph nodes, not to lack of an interferon type I response, during the acute phase. J Virol 2010; 84: 1838–1846.

    CAS  PubMed  Google Scholar 

  135. Nascimbeni M, Perie L, Chorro L, Diocou S, Kreitmann L, Louis S et al. Plasmacytoid dendritic cells accumulate in spleens from chronically HIV-infected patients but barely participate in interferon-alpha expression. Blood 2009; 113: 6112–6119.

    CAS  PubMed  Google Scholar 

  136. Herbeuval JP, Hardy AW, Boasso A, Anderson SA, Dolan MJ, Dy M et al. Regulation of TNF-related apoptosis-inducing ligand on primary CD4+ T cells by HIV-1: role of type I IFN-producing plasmacytoid dendritic cells. Proc Natl Acad Sci USA 2005; 102: 13974–13979.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Herbeuval JP, Nilsson J, Boasso A, Hardy AW, Kruhlak MJ, Anderson SA et al. Differential expression of IFN-alpha and TRAIL/DR5 in lymphoid tissue of progressor versus nonprogressor HIV-1-infected patients. Proc Natl Acad Sci USA 2006; 103: 7000–7005.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Stary G, Klein I, Kohlhofer S, Koszik F, Scherzer T, Mullauer L et al. Plasmacytoid dendritic cells express TRAIL and induce CD4+ T-cell apoptosis in HIV-1 viremic patients. Blood 2009; 114: 3854–3863.

    CAS  PubMed  Google Scholar 

  139. Chehimi J, Papasavvas E, Tomescu C, Gekonge B, Abdulhaqq S, Raymond A et al. Inability of plasmacytoid dendritic cells to directly lyse HIV-infected autologous CD4+ T cells despite induction of tumor necrosis factor-related apoptosis-inducing ligand. J Virol 2010; 84: 2762–2773.

    CAS  PubMed  Google Scholar 

  140. Rouse BT, Sarangi PP, Suvas S . Regulatory T cells in virus infections. Immunol Rev 2006; 212: 272–286.

    CAS  PubMed  Google Scholar 

  141. Belkaid Y, Rouse BT . Natural regulatory T cells in infectious disease. Nat Immunol 2005; 6: 353–360.

    CAS  PubMed  Google Scholar 

  142. Seddiki N, Kelleher AD . Regulatory T cells in HIV infection: who's suppressing what? Curr HIV/AIDS Rep 2008; 5: 20–26.

    PubMed  Google Scholar 

  143. Eggena MP, Barugahare B, Jones N, Okello M, Mutalya S, Kityo C et al. Depletion of regulatory T cells in HIV infection is associated with immune activation. J Immunol 2005; 174: 4407–4414.

    CAS  PubMed  Google Scholar 

  144. Chase AJ, Yang HC, Zhang H, Blankson JN, Siliciano RF . Preservation of FoxP3+ regulatory T cells in the peripheral blood of human immunodeficiency virus type 1-infected elite suppressors correlates with low CD4+ T-cell activation. J Virol 2008; 82: 8307–8315.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kolte L, Gaardbo JC, Skogstrand K, Ryder LP, Ersboll AK, Nielsen SD . Increased levels of regulatory T cells (Tregs) in human immunodeficiency virus-infected patients after 5 years of highly active anti-retroviral therapy may be due to increased thymic production of naive Tregs. Clin Exp Immunol 2009; 155: 44–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gaardbo JC, Nielsen SD, Vedel SJ, Ersboll AK, Harritshoj L, Ryder LP et al. Regulatory independent of immunological and virological status, as well as initiation of highly active anti-retroviral therapy. Clin Exp Immunol 2008; 154: 80–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Shaw JM, Hunt PW, Critchfield JW, McConnell DH, Garcia JC, Pollard RB et al. Increased frequency of regulatory T cells accompanies increased immune activation in rectal mucosae of HIV-positive noncontrollers. J Virol 2011; 85: 11422–11434.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Chase AJ, Sedaghat AR, German JR, Gama L, Zink MC, Clements JE et al. Severe depletion of CD4+CD25+ regulatory T cells from the intestinal lamina propria but not peripheral blood or lymph nodes during acute simian immunodeficiency virus infection. J Virol 2007; 81: 12748–12757.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Moreno A, Barcena R, Quereda C, Casado JL, Perez-Elias MJ, Fortun J et al. Safe use of raltegravir and sirolimus in an HIV-infected patient with renal impairment after orthotopic liver transplantation. AIDS 2008; 22: 547–548.

    PubMed  Google Scholar 

  150. Di Benedetto F, Di Sandro S, de Ruvo N, Montalti R, Ballarin R, Guerrini GP et al. First report on a series of HIV patients undergoing rapamycin monotherapy after liver transplantation. Transplantation 2010; 89: 733–738.

    CAS  PubMed  Google Scholar 

  151. Guiducci C, Ghirelli C, Marloie-Provost MA, Matray T, Coffman RL, Liu YJ et al. PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J Exp Med 2008; 205: 315–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI3K–mTOR–p70S6K pathway. Nat Immunol 2008; 9: 1157–1164.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Onoe T, Kalscheuer H, Danzl N, Chittenden M, Zhao G, Yang YG et al. Human natural regulatory T cell development, suppressive function, and postthymic maturation in a humanized mouse model. J Immunol 2011; 187: 3895–3903.

    CAS  PubMed  Google Scholar 

  154. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007; 69: 1789–1799.

    CAS  PubMed  Google Scholar 

  155. Williams R, Bokhari S, Silverstein P, Pinson D, Kumar A, Buch S . Nonhuman primate models of NeuroAIDS. J Neurovirol 2008; 14: 292–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/γcnull (NOG) mice (hu-HSC NOG mice). Int Immunol 2009; 21: 843–858.

    CAS  PubMed  Google Scholar 

  157. Andre MC, Erbacher A, Gille C, Schmauke V, Goecke B, Hohberger A et al. Long-term human CD34+ stem cell-engrafted nonobese diabetic/SCID/IL-2R γnull mice show impaired CD8+ T cell maintenance and a functional arrest of immature NK cells. J Immunol 2010; 185: 2710–2720.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liguo Zhang or Lishan Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Su, L. HIV-1 immunopathogenesis in humanized mouse models. Cell Mol Immunol 9, 237–244 (2012). https://doi.org/10.1038/cmi.2012.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2012.7

Keywords

This article is cited by

Search

Quick links