Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Persistent expression of biologically active anti-HER2 antibody by AAVrh.10-mediated gene transfer

Abstract

Trastuzumab (Herceptin) is a recombinant humanized monoclonal antibody (mAb) directed against an extracellular region of the human epidermal growth-factor receptor type 2 (HER2) protein. We hypothesized that a single adeno-associated virus (AAV)-mediated genetic delivery of an anti-HER2 antibody should be effective in mediating long-term production of anti-HER2 and in suppressing the growth of human tumors in a xenograft model in nude mice. The adeno-associated virus gene transfer vector AAVrh.10αHER2 was constructed based on a non-human primate AAV serotype rh.10 to express the complementary DNAs for the heavy and light chains of mAb 4D5, the murine precursor to trastuzumab. The data show that genetically transferred anti-HER2 selectively bound human HER2 protein and suppressed the proliferation of HER2+ tumor cell lines. A single administration of AAVrh.10αHER2 provided long-term therapeutic levels of anti-HER2 antibody expression without inducing an anti-idiotype response, suppressed the growth of HER2+ tumors and increased the survival of tumor bearing mice. In the context that trastuzumab therapy requires frequent and repeated administration, this strategy might be developed as an alternate platform for delivery of anti-HER2 therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, Greene MI et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 1984; 312: 513–516.

    Article  CAS  Google Scholar 

  2. Fendly BM, Winget M, Hudziak RM, Lipari MT, Napier MA, Ullrich A . Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res 1990; 50: 1550–1558.

    CAS  PubMed  Google Scholar 

  3. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  CAS  Google Scholar 

  4. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  Google Scholar 

  5. Chan T, Sami A, El-Gayed A, Guo X, Xiang J . HER-2/neu-gene engineered dendritic cell vaccine stimulates stronger HER-2/neu-specific immune responses compared to DNA vaccination. Gene Ther 2006; 13: 1391–1402.

    Article  CAS  Google Scholar 

  6. Drebin JA, Link VC, Greene MI . Monoclonal antibodies specific for the neu oncogene product directly mediate anti-tumor effects in vivo. Oncogene 1988; 2: 387–394.

    CAS  PubMed  Google Scholar 

  7. Garrett JT, Rawale S, Allen SD, Phillips G, Forni G, Morris JC et al. Novel engineered trastuzumab conformational epitopes demonstrate in vitro and in vivo antitumor properties against HER-2/neu. J Immunol 2007; 178: 7120–7131.

    Article  CAS  Google Scholar 

  8. Nahta R Esteva FJ . Trastuzumab: triumphs and tribulations. Oncogene 2007; 26: 3637–3643.

    Article  Google Scholar 

  9. Leyland-Jones B, Arnold A, Gelmon K, Verma S, Ayoub JP, Seidman A et al. Pharmacologic insights into the future of trastuzumab. Ann Oncol 2001; 12 (Suppl 1): S43–S47.

    Article  Google Scholar 

  10. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 1992; 89: 4285–4289.

    Article  CAS  Google Scholar 

  11. De BP, Heguy A, Hackett NR, Ferris B, Leopold PL, Lee J et al. High levels of persistent expression of alpha1-antitrypsin mediated by the nonhuman primate serotype rh.10 adeno-associated virus despite preexisting immunity to common human adeno-associated viruses. Mol Ther 2006; 13: 67–76.

    Article  CAS  Google Scholar 

  12. Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 2005; 23: 584–590.

    Article  CAS  Google Scholar 

  13. De BP, Hackett NR, Crystal RG, Boyer JL . Rapid/sustained anti-anthrax passive immunity mediated by co-administration of Ad/AAV. Mol Ther 2008; 16: 203–209.

    Article  CAS  Google Scholar 

  14. Limberis MP, Vandenberghe LH, Zhang L, Pickles RJ, Wilson JM . Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 2009; 17: 294–301.

    Article  CAS  Google Scholar 

  15. Song Y, Lou H, Boyer JL, Limberis MP, Vandenberghe LH, Hackett NR et al. Functional CFTR expression in cystic fibrosis airway epithelial cells by AAV6.2-mediated segmental trans-splicing. Hum Gene Ther 2009; 20: 267–281.

    Article  CAS  Google Scholar 

  16. Bunn Jr PA, Helfrich B, Soriano AF, Franklin WA, Varella-Garcia M, Hirsch FR et al. Expression of Her-2/neu in human lung cancer cell lines by immunohistochemistry and fluorescence in situ hybridization and its relationship to in vitro cytotoxicity by trastuzumab and chemotherapeutic agents. Clin Cancer Res 2001; 7: 3239–3250.

    CAS  PubMed  Google Scholar 

  17. Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 1999; 18: 2241–2251.

    Article  CAS  Google Scholar 

  18. Spiridon CI, Ghetie MA, Uhr J, Marches R, Li JL, Shen GL et al. Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo. Clin Cancer Res 2002; 8: 1720–1730.

    CAS  PubMed  Google Scholar 

  19. Jia LT, Zhang LH, Yu CJ, Zhao J, Xu YM, Gui JH et al. Specific tumoricidal activity of a secreted proapoptotic protein consisting of HER2 antibody and constitutively active caspase-3. Cancer Res 2003; 63: 3257–3262.

    CAS  PubMed  Google Scholar 

  20. Kern JA, Torney L, Weiner D, Gazdar A, Shepard HM, Fendly B . Inhibition of human lung cancer cell line growth by an anti-p185HER2 antibody. Am J Respir Cell Mol Biol 1993; 9: 448–454.

    Article  CAS  Google Scholar 

  21. Martinez-Ramirez A, Rodriguez-Perales S, Melendez B, Martinez-Delgado B, Urioste M, Cigudosa JC et al. Characterization of the A673 cell line (Ewing tumor) by molecular cytogenetic techniques. Cancer Genet Cytogenet 2003; 141: 138–142.

    Article  CAS  Google Scholar 

  22. Dubel S . Recombinant therapeutic antibodies. Appl Microbiol Biotechnol 2007; 74: 723–729.

    Article  Google Scholar 

  23. Harries M Smith I . The development and clinical use of trastuzumab (Herceptin). Endocr Relat Cancer 2002; 9: 75–85.

    Article  Google Scholar 

  24. Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J . Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 1998; 58: 2825–2831.

    CAS  PubMed  Google Scholar 

  25. Pietras RJ, Pegram MD, Finn RS, Maneval DA, Slamon DJ . Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene 1998; 17: 2235–2249.

    Article  CAS  Google Scholar 

  26. Valabrega G, Montemurro F, Aglietta M . Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol 2007; 18: 977–984.

    Article  CAS  Google Scholar 

  27. Bakker JM, Bleeker WK, Parren PW . Therapeutic antibody gene transfer: an active approach to passive immunity. Mol Ther 2004; 10: 411–416.

    Article  CAS  Google Scholar 

  28. Marasco WA . Therapeutic antibody gene transfer. Nat Biotechnol 2005; 23: 551–552.

    Article  CAS  Google Scholar 

  29. Liu XY, Pop LM, Vitetta ES . Engineering therapeutic monoclonal antibodies. Immunol Rev 2008; 222: 9–27.

    Article  CAS  Google Scholar 

  30. Li J, Menzel C, Meier D, Zhang C, Dubel S, Jostock T . A comparative study of different vector designs for the mammalian expression of recombinant IgG antibodies. J Immunol Methods 2007; 318: 113–124.

    Article  CAS  Google Scholar 

  31. Hotta A, Kamihira M, Itoh K, Morshed M, Kawabe Y, Ono K et al. Production of anti-CD2 chimeric antibody by recombinant animal cells. J Biosci Bioeng 2004; 98: 298–303.

    Article  CAS  Google Scholar 

  32. Noel D, Pelegrin M, Kramer S, Jacquet C, Skander N, Piechaczyk M . High in vivo production of a model monoclonal antibody on adenoviral gene transfer. Hum Gene Ther 2002; 13: 1483–1493.

    Article  CAS  Google Scholar 

  33. Watanabe M, Boyer JL, Hackett NR, Qiu J, Crystal RG . Genetic delivery of the murine equivalent of bevacizumab (avastin), an anti-vascular endothelial growth factor monoclonal antibody, to suppress growth of human tumors in immunodeficient mice. Hum Gene Ther 2008; 19: 300–310.

    Article  CAS  Google Scholar 

  34. Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T . IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 2000; 1: 376–382.

    Article  CAS  Google Scholar 

  35. Noel D, Pelegrin M, Marin M, Biard-Piechaczyk M, Ourlin JC, Mani JC et al. In vitro and in vivo secretion of cloned antibodies by genetically modified myogenic cells. Hum Gene Ther 1997; 8: 1219–1229.

    Article  CAS  Google Scholar 

  36. Tjelle TE, Corthay A, Lunde E, Sandlie I, Michaelsen TE, Mathiesen I et al. Monoclonal antibodies produced by muscle after plasmid injection and electroporation. Mol Ther 2004; 9: 328–336.

    Article  CAS  Google Scholar 

  37. Chen J, Su C, Lu Q, Shi W, Zhang Q, Wang X et al. Generation of adenovirus-mediated anti-CD20 antibody and its effect on B-cell deletion in mice and nonhuman primate cynomolgus monkey. Mol Cancer Ther 2008; 7: 1562–1568.

    Article  CAS  Google Scholar 

  38. Ho DT, Wykoff-Clary S, Gross CS, Schneider D, Jin F, Kretschmer PJ et al. Growth inhibition of an established A431 xenograft tumor by a full-length anti-EGFR antibody following gene delivery by AAV. Cancer Gene Ther 2009; 16: 184–194.

    Article  CAS  Google Scholar 

  39. Deshane J, Loechel F, Conry RM, Siegal GP, King CR, Curiel DT . Intracellular single-chain antibody directed against erbB2 down-regulates cell surface erbB2 and exhibits a selective anti-proliferative effect in erbB2 overexpressing cancer cell lines. Gene Ther 1994; 1: 332–337.

    CAS  PubMed  Google Scholar 

  40. Deshane J, Siegal GP, Alvarez RD, Wang MH, Feng M, Cabrera G et al. Targeted tumor killing via an intracellular antibody against erbB-2. J Clin Invest 1995; 96: 2980–2989.

    Article  CAS  Google Scholar 

  41. Xu YM, Wang LF, Jia LT, Qiu XC, Zhao J, Yu CJ et al. A caspase-6 and anti-human epidermal growth factor receptor-2 (HER2) antibody chimeric molecule suppresses the growth of HER2-overexpressing tumors. J Immunol 2004; 173: 61–67.

    Article  CAS  Google Scholar 

  42. Jiang M, Shi W, Zhang Q, Wang X, Guo M, Cui Z et al. Gene therapy using adenovirus-mediated full-length anti-HER-2 antibody for HER-2 overexpression cancers. Clin Cancer Res 2006; 12: 6179–6185.

    Article  CAS  Google Scholar 

  43. Nguyen AT, Dow AC, Kupiec-Weglinski J, Busuttil RW, Lipshutz GS . Evaluation of gene promoters for liver expression by hydrodynamic gene transfer. J Surg Res 2008; 148: 60–66.

    Article  CAS  Google Scholar 

  44. Loeb JE, Cordier WS, Harris ME, Weitzman MD, Hope TJ . Enhanced expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis virus posttranscriptional regulatory element: implications for gene therapy. Hum Gene Ther 1999; 10: 2295–2305.

    Article  CAS  Google Scholar 

  45. Hackett NR, Kaminsky SM, Sondhi D, Crystal RG . Antivector and antitransgene host responses in gene therapy. Curr Opin Mol Ther 2000; 2: 376–382.

    CAS  PubMed  Google Scholar 

  46. Pelegrin M, Marin M, Noel D, Piechaczyk M . Genetically engineered antibodies in gene transfer and gene therapy. Hum Gene Ther 1998; 9: 2165–2175.

    Article  CAS  Google Scholar 

  47. Cesco-Gaspere M, Zentilin L, Giacca M, Burrone OR . Boosting anti-idiotype immune response with recombinant AAV enhances tumour protection induced by gene gun vaccination. Scand J Immunol 2008; 68: 58–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B Ferris, BP De and A Bajak for technical assistance, and T Bryan and N Mohamed for their help in preparing this paper. These studies were supported, in part, by U01 HL66952 and the Will Rogers Memorial Fund, Los Angeles, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R G Crystal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

These studies were supported, in part, by U01 HL66952.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Qiu, J., Wang, R. et al. Persistent expression of biologically active anti-HER2 antibody by AAVrh.10-mediated gene transfer. Cancer Gene Ther 17, 559–570 (2010). https://doi.org/10.1038/cgt.2010.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.11

Keywords

This article is cited by

Search

Quick links