Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A photic visual cycle of rhodopsin regeneration is dependent on Rgr

Abstract

During visual excitation, rhodopsin undergoes photoactivation and bleaches to opsin and all-trans-retinal1,2. To regenerate rhodopsin and maintain normal visual sensitivity, the all-trans isomer must be metabolized and reisomerized to produce the chromophore 11-cis-retinal in biochemical steps that constitute the visual cycle and involve the retinal pigment epithelium (RPE; refs. 38). A key step in the visual cycle is isomerization of an all-trans retinoid to 11-cis-retinol in the RPE (refs. 911). It could be that the retinochrome-like opsins, peropsin, or the retinal G protein-coupled receptor (RGR) opsin12–16 are isomerases in the RPE. In contrast to visual pigments, RGR is bound predominantly to endogenous all-trans-retinal, and irradiation of RGR in vitro results in stereospecific conversion of the bound all-trans isomer to 11-cis-retinal17. Here we show that RGR is involved in the formation of 11-cis-retinal in mice and functions in a light-dependent pathway of the rod visual cycle. Mutations in the human gene encoding RGR are associated with retinitis pigmentosa18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of mouse Rgr.
Figure 2: Total retinal and rhodopsin in Rgr+/+, Rgr+/− and Rgr−/− mice.
Figure 3: Effect of ambient light of various intensities on the amount of total retinal and rhodopsin in Rgr+/+ and Rgr−/− mice.
Figure 4: Steady-state accumulation of all-trans-retinyl ester in light-adapted Rgr+/+ and Rgr−/− mice.
Figure 5: ERG responses of Rgr+/+ and Rgr−/− mice after exposure to constant illumination.
Figure 6: Regeneration of rhodopsin in the dark after brief irradiation of Rgr+/+ and Rgr−/− mice.

Similar content being viewed by others

References

  1. Wald, G. The molecular basis of visual excitation. Nature 219, 800–807 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Stryer, L. Molecular mechanism of visual excitation. Harvey Lect. 87, 129–143 (1991–1991).

    PubMed  Google Scholar 

  3. Hubbard, R. & Wald, G. Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J. Gen. Physiol. 36, 269–315 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dowling, J.E. Chemistry of visual adaptation in the rat. Nature 163, 114–118 (1960).

    Article  Google Scholar 

  5. Zimmerman, W.F. The distribution and proportions of vitamin A compounds during the visual cycle in the rat. Vision Res. 14, 795–802 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. Bridges, C.D.B. Vitamin A and the role of the pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye. Exp. Eye Res. 22, 435–455 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Redmond, T.M. et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nature Genet. 20, 344–351 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Saari, J.C. Biochemistry of visual pigment regeneration. Invest. Ophthalmol. Vis. Sci. 41, 337–348 (2000).

    CAS  PubMed  Google Scholar 

  9. McBee, J.K. et al. Isomerization of all- trans -retinol to cis-retinols in bovine retinal pigment epithelial cells: dependence on the specificity of retinoid-binding proteins. Biochemistry 39, 11370–11380 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Deigner, P.S., Law, W.C., Cañada, F.J. & Rando, R.R. Membranes as the energy source in the endergonic transformation of vitamin A to 11- cis -retinoid. Science 244, 968–971 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Rando, R.R. Membrane phospholipids and the dark side of vision. J. Bioenerg. Biomembr. 23, 133–146 (1991).

    CAS  PubMed  Google Scholar 

  12. Ozaki, K., Hara, R., Hara, T. & Kakitani, T. Squid retinochrome. Configurational changes of the retinal chromophore. Biophys. J. 44, 127–137 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, H., Gilbert, D.J., Copeland, N.G., Jenkins, N.A. & Nathans, J. Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proc. Natl. Acad. Sci. USA 94, 9893–9898 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang, M., Pandey, S. & Fong, H.K.W. An opsin homologue in the retina and pigment epithelium. Invest. Ophthalmol. Vis. Sci. 34, 3669–3678 (1993).

    CAS  PubMed  Google Scholar 

  15. Pandey, S., Blanks, J.C., Spee, C., Jiang, M. & Fong, H.K.W. Cytoplasmic retinal localization of an evolutionary homolog of the visual pigments. Exp. Eye Res. 58, 605–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Hao, W. & Fong, H.K.W. Blue and ultraviolet light-absorbing opsin from the retinal pigment epithelium. Biochemistry 35, 6251–6256 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Hao, W. & Fong, H.K.W. The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium. J. Biol. Chem. 274, 6085–6090 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Morimura, H., Saindelle-Ribeaudeau, F., Berson, E.L. & Dryja, T.P. Mutations in RGR, encoding a light-sensitive opsin homologue, in patients with retinitis pigmentosa. Nature Genet. 23, 393–394 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, P., Lee, T.D. & Fong, H.K.W. Interaction of 11- cis -retinol dehydrogenase with the chromophore of Retinal G. protein-coupled Receptor opsin. J. Biol. Chem. Papers in Press, published March 27, 2001.

  20. Tao, L. et al. Structure and developmental expression of the mouse RGR opsin gene. Mol. Vis. 4, 25 (1998).

    CAS  PubMed  Google Scholar 

  21. Groenendijk, G.W.T., De Grip, W.J. & Daemen, F.J.M. Identification and characterization of syn- and anti-isomers of retinaloximes. Anal. Biochem. 99, 304–310 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Groenendijk, G.W.T., De Grip, W.J. & Daemen, F.J.M. Quantitative determination of retinals with complete retention of their geometric configuration. Biochim. Biophys. Acta 617, 430–438 (1980).

    Article  CAS  PubMed  Google Scholar 

  23. Ozaki, K., Terakita, A., Hara, R. & Hara, T. Rhodopsin and retinochrome in the retina of a marine gastropod, Conomulex luhuanus. Vision Res. 26, 691–705 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Landers, G.M. High-performance liquid chromatography of retinoid isomers. Methods Enzymol. 189, 70–80 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Alpern, M. Rhodopsin kinetics in the human eye. J. Physiol. (Lond.) 217, 447–471 (1971).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Mendez for advice about ES cell culture, A. Nagy for the gift of R1 ES cells and L. LaBree for work on statistical analysis of data. This work was supported by grants from the Hoover Foundation and the U.S. Public Health Service (EY08364 and EY03040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry K.W. Fong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Hao, W., Rife, L. et al. A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat Genet 28, 256–260 (2001). https://doi.org/10.1038/90089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing