Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transport-vesicle targeting: tethers before SNAREs

Abstract

Protein secretion and the transport of proteins between membrane-bound compartments are mediated by small, membrane-bound vesicles. Here I review what is known about the process by which vesicles are targeted to the correct destination. A growing family of proteins, whose precise modes of action are far from established, is involved in targeting. Despite the wide diversity in the identities of the players, some common themes are emerging that may explain how vesicles can identify their targets and release their cargo at the correct time and place in eukaryotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterotypic targeting and fusion.
Figure 2: Homotypic endosomal targeting and fusion.

Similar content being viewed by others

References

  1. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    CAS  Google Scholar 

  2. Scheller, R. H. Membrane trafficking in the presynaptic nerve terminal. Neuron 14, 893–897 ( 1995).

    CAS  Google Scholar 

  3. Südhof, T. C. The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature 375, 645–653 (1995).

    Google Scholar 

  4. Nichols, B. J. & Pelham, H. R. SNAREs and membrane fusion in the Golgi apparatus. Biochim. Biophys. Acta 1404, 9–31 (1998).

    CAS  Google Scholar 

  5. Ferro-Novick, S. & Jahn, R. Vesicle fusion from yeast to man. Nature 370, 191– 193 (1994).

    CAS  Google Scholar 

  6. Montecucco, C. & Schiavo, G. Structure and function of tetanus and botulinum neurotoxins. Quart. Rev. Biophys. 28, 423–472 (1995).

    CAS  Google Scholar 

  7. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051 –5061 (1994).

    CAS  Google Scholar 

  8. Weis, W. I. & Scheller, R. H. SNARE the rod, coil the complex. Nature 395, 328–329 (1998).

    CAS  Google Scholar 

  9. Rizo, J. & Südhof, T. C. Mechanics of membrane fusion. Nature Struct. Biol. 5, 839– 842 (1998).

    CAS  Google Scholar 

  10. Hughson, F. M. Membrane fusion: structure snared at last. Curr. Biol. 9, R49–R52 (1999).

    CAS  Google Scholar 

  11. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).

    CAS  Google Scholar 

  12. Nicholson, K. L. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE, Sso1p. Nature Struct. Biol. 5, 793–802 (1998).

    CAS  Google Scholar 

  13. Lian, J. P., Stone, S., Jiang, Y., Lyons, P. & Ferro-Novick, S. Ypt1p implicated in v-SNARE activation. Nature 372, 698–701 ( 1994).

    CAS  Google Scholar 

  14. Søgaard, M. et al. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78, 937–948 (1994).

    Google Scholar 

  15. Lupashin, V. V. & Waters, M. G. t-SNARE activation through transient interaction with a rab-like guanosine triphosphatase. Science 276, 1255–1258 ( 1997).

    CAS  Google Scholar 

  16. Pfeffer, S. R. Transport vesicle docking: SNAREs and associates. Annu. Rev. Cell Dev.Biol. 12, 441–461 ( 1996).

    CAS  Google Scholar 

  17. Pevsner, J. et al. Specificity and regulation of a synaptic vesicle docking complex. Neuron 13, 353–361 (1994).

    CAS  Google Scholar 

  18. Butz, S., Okamoto, M. & Südhof, T. C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 773–782 ( 1998).

    CAS  Google Scholar 

  19. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. EMBO J. 14, 2317–2325 ( 1995).

    CAS  Google Scholar 

  20. Hunt, J. M. et al. A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12, 1269– 1279 (1994).

    CAS  Google Scholar 

  21. Broadie, K. et al. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron 15, 663–673 (1995).

    CAS  Google Scholar 

  22. Schiavo, G., Stenbeck, G., Rothman, J. E. & Sollner, T. H. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc. Natl Acad. Sci. USA 94, 997– 1001 (1997).

    CAS  Google Scholar 

  23. Hanson, P. I., Heuser, J.E. & Jahn, R. Neurotransmitter release — four years of SNARE complexes. Curr. Opin. Neurobiol. 7, 310 –315 (1997).

    CAS  Google Scholar 

  24. Garcia, E. P., McPherson, P. S., Chilcote, T. J., Takei, K. & DeCamilli, P. rb Sec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J. Cell Biol. 129, 105– 120 (1995).

    CAS  Google Scholar 

  25. von Mollard, G. F., Nothwehr, S. F. & Stevens, T. H. The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J. Cell Biol. 137, 1511–1524 (1997).

    CAS  Google Scholar 

  26. Lupashin, V. V., Pokrovskaya, I. D., McNew, J.A. & Waters, M. G. Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic. Mol. Biol. Cell 8, 2659– 2676 (1997).

    CAS  Google Scholar 

  27. Warren, G. & Malhotra, V. The organization of the Golgi complex. Curr. Opin. Cell Biol. 10, 493– 498 (1998).

    CAS  Google Scholar 

  28. Orci, L., Perrelet, A. & Rothman, J. E. Vesicles on strings: morphological evidence for processive transport within the Golgi stack. Proc. Natl Acad. Sci. USA 95, 2279–2283 (1998).

    CAS  Google Scholar 

  29. Waters, M. G., Clary, D. O. & Rothman, J. E. A novel 115-kD peripheral membrane protein is required for intercisternal transport in the Golgi stack. J. Cell Biol. 118, 1015–1026 ( 1992).

    CAS  Google Scholar 

  30. Sapperstein, S. K., Walter, D. M., Grosvenor, A. R., Heuser, J. E. & Waters, M. G. p115 is a general vesicular transport factor related to the yeast ER-Golgi transport factor Uso1p. Proc. Natl Acad. Sci. USA 92, 522–526 (1995).

    CAS  Google Scholar 

  31. Yamakawa, H., Seog, D.-H., Yoda, K., Yamasaki, M. & Wakabayashi, T. Uso1p is a dimer with two globular heads and a long coiled coil tail. J. Struct. Biol. 116, 356–365 (1996).

    CAS  Google Scholar 

  32. Nakajima, H. et al. A cytoskeletal-related gene, USO1, is required for intracellular protein transport in Saccharomyces cerevisiae. J. Cell Biol. 113, 245–260 ( 1991).

    CAS  Google Scholar 

  33. Barroso, M., Nelson, D. S. & Sztul, E. Transcytosis-associated protein (TAP)/p115 is a general fusion factor required for binding of vesicles to acceptor membranes. Proc. Natl Acad. Sci. USA 92, 527– 531 (1995).

    CAS  Google Scholar 

  34. Sapperstein, S. K., Lupashin, V. V., Schmitt, H. D. & Waters, M. G. Assembly of the ER to Golgi SNARE complex requires Uso1p. J. Cell Biol. 132, 755–767 ( 1996).

    CAS  Google Scholar 

  35. Cao, X., Ballew, N. & Barlowe, C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J. 17, 2156–2165 (1998).

    Google Scholar 

  36. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. Curr. Opin. Cell Biol. 9, 496–504 (1997).

    CAS  Google Scholar 

  37. Van Rheenen, S. M., Cao, X., Lupashin, V. V., Barlowe, C. & Waters, M. G. Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J. Cell Biol. 141, 1107–1119 (1998).

    CAS  Google Scholar 

  38. Sacher, M. et al. TRAPP: a highly conserved novel complex on the cis Golgi that mediates vesicle docking and fusion. EMBO J. 17, 2494–2503 (1998).

    CAS  Google Scholar 

  39. Nakamura, N., Lowe, M., Levine, T.P., Rabouille, C. & Warren, G. The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89, 445–455 (1997).

    CAS  Google Scholar 

  40. Sönnichsen, B., Lowe, M., Levine, T., Jamsa, E., Dirac-Svejstrup, B. & Warren, G. A role for giantin in docking COPI vesicles to Golgi membranes. J. Cell Biol. 140, 1013–1021 (1998).

    Google Scholar 

  41. Robinson, L. J. & Martin, T. F. J. Docking and fusion in neurosecretion. Curr. Opin. Cell Biol. 10, 483–492 (1998).

    CAS  Google Scholar 

  42. TerBush, D. R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).

    CAS  Google Scholar 

  43. Hsu, S.-C., Hazuka, C. D., Foletti, D. L. & Scheller, R. H. Targeting vesicles to specific sites on the plasma membrane: role of the Sec6/8 complex. Trends Cell Biol. (in the press).

  44. Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83, 423–432 ( 1995).

    CAS  Google Scholar 

  45. Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494– 498 (1998).

    CAS  Google Scholar 

  46. Peterson, M. R., Burd, C. G., & Emr, S. D. Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr. Biol. 9, 159–162 ( 1999).

    CAS  Google Scholar 

  47. Tall, G. G., Hama, H., DeWald, D. & Horazdovsky, B. F. The phosphatidylinositol 3-phosphate binding protein, Vac1p, interacts with a Rab GTPase and a Sec1p homolog to facilitate vesicle-mediated vacuolar protein sorting. Mol. Biol. Cell (in the press).

  48. TerBush, D. R. & Novick, P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol. 130, 299–312 (1995).

    CAS  Google Scholar 

  49. Finger, F. P., Hughes, T. E. & Novick, P. Sec3p is a spatial landmark for polarized secretion. Cell 92, 559–571 (1998).

    CAS  Google Scholar 

  50. Brennwald, P. et al. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Cell 79, 245–258 (1994).

    CAS  Google Scholar 

  51. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071– 1080 (1999).

    CAS  Google Scholar 

  52. Grindstaff, K. K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    CAS  Google Scholar 

  53. Vitale, G. et al. Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J. 17, 1941–1951 (1998).

    CAS  Google Scholar 

  54. Gournier, H., Stenmark, H., Rybin, V., Lippé R., & Zerial, M. Two distinct effectors of the small GTPase Rab5 cooperate in endocytic membrane fusion. EMBO J. 17, 1930–1940 (1998).

    CAS  Google Scholar 

  55. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 ( 1997).

    CAS  Google Scholar 

  56. Corvera, S. & Czech, M. P. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 8, 442–447 (1998).

    CAS  Google Scholar 

  57. Gaullier, J. M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).

    CAS  Google Scholar 

  58. Patki, V., Lawe, D. C., Corvera, S., Virbasius, J. V. & Chawla, A. A functional PtdIns(3)P-binding motif. Nature 394, 433–434 ( 1998).

    CAS  Google Scholar 

  59. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 ( 1999).

    CAS  Google Scholar 

  60. Rybin, V. et al. GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature 383, 266– 269 (1997).

    Google Scholar 

  61. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715– 728 (1992).

    CAS  Google Scholar 

  62. Stenmark, H. et al. Inhibition of Rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287– 1296 (1994).

    CAS  Google Scholar 

  63. Schimmoller, F., Simon, I. & Pfeffer, S. R. Rab GTPases, directors of vesicle docking. J. Biol. Chem. 273, 22161–22164 (1998).

    CAS  Google Scholar 

  64. Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation and fusion. Cell 75, 409–418 (1993).

    Google Scholar 

  65. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Google Scholar 

  66. Mayer, A. & Wickner, W. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol. 136, 307–317 (1997).

    CAS  Google Scholar 

  67. Ungermann, C., Nichols, B. J., Pelham, H. R. B. & Wickner, W. A vacuolar v-t-SNARE complex, the predominant form in vivo and on isolated vacuoles, is disassembled and activated for docking and fusion. J. Cell Biol. 140, 61–69 (1998).

    CAS  Google Scholar 

  68. Xu, Z., Mayer, A., Muller, E. & Wickner, W. A heterodimer of thioredoxin and I(B)2 cooperates with Sec18p (NSF) to promote yeast vacuole inheritance. J. Cell Biol. 136, 299– 306 (1997).

    CAS  Google Scholar 

  69. Xu, Z., Sato, K. & Wickner, W. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Cell 93, 1125–1134 (1998).

    CAS  Google Scholar 

  70. Barlowe, C. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. J. Cell Biol. 139, 1097– 1108 (1997).

    CAS  Google Scholar 

  71. Ungermann, C., Sato, K. & Wickner, W. Defining the functions of trans-SNARE pairs. Nature 396, 543–548 ( 1998).

    CAS  Google Scholar 

  72. Nichols, B. J. et al. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 387, 199–202 ( 1997).

    CAS  Google Scholar 

  73. Rabouille, C. et al. Syntaxin 5 is a common component of NSF-and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92, 603–610 (1998).

    CAS  Google Scholar 

  74. Patel, S. K., Indig, F. E., Olivieri, N., Levine, N. D. & Latterich, M. Organelle membrane fusion: a novel function for the syntaxin homolog Ufe1p in ER membrane fusion. Cell 92, 611–620 ( 1998).

    CAS  Google Scholar 

  75. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580– 585 (1998).

    CAS  Google Scholar 

  76. Kato, M. et al. Physical and functional interaction of rabphilin-3A with alpha-actinin. J. Biol. Chem. 271, 31775– 31778 (1996).

    CAS  Google Scholar 

  77. Peranen, J., Auvinen, P., Virta, H., Wepf, R. & Simons, K. Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J. Cell Biol. 135, 153–167 (1996).

    CAS  Google Scholar 

  78. Sato, K. & Wickner, W. Functional reconstitution of Ypt7p GTPase and a purified vacuole SNARE complex. Science 281, 700–702 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeffer, S. Transport-vesicle targeting: tethers before SNAREs. Nat Cell Biol 1, E17–E22 (1999). https://doi.org/10.1038/8967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/8967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing