Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Properly formed but improperly localized synaptic specializations in the absence of laminin α4

Abstract

Precise apposition of pre- to postsynaptic specializations is required for optimal function of chemical synapses, but little is known about how it is achieved. At the skeletal neuromuscular junction, active zones (transmitter release sites) in the nerve terminal lie directly opposite junctional folds in the postsynaptic membrane. Few active zones or junctional folds form in mice lacking the laminin β2 chain, which is normally concentrated in the synaptic cleft. β2 and the broadly expressed γ1 chain form heterotrimers with α chains, three of which, α2, α4 and α5, are present in the synaptic cleft. Thus, α2β2γ1, α4β2γ1 and α5β2γ1 heterotrimers are all lost in β2 mutants. In mice lacking laminin α4, active zones and junctional folds form in normal numbers, but are not precisely apposed to each other. Thus, formation and localization of synaptic specializations are regulated separately, and α4β2γ1 (called laminin-9) is critical in the latter process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and function of muscles in lama4−/− mice.
Figure 2: Subtle morphological defects in NMJs of lama4−/− mice.
Figure 3: Misapposition of pre- and postsynaptic specializations at lama4−/− NMJs.
Figure 4: Quantitative comparison of neuromuscular ultrastructure in control and lama4−/− mice, based on analysis of electron micrographs such as those shown in Fig. 3.
Figure 5: Lack of laminin α4 does not affect the distribution of other laminin chains or BL components.
Figure 6: Distribution of laminin chains within the synaptic cleft.
Figure 7: Comparison of synaptic ultrastructure in mice lacking laminin α4 (lama4−/−; a, b) laminin β2 (lamb2−/−; c, d) laminin α2 (dy/dy; e, f) or utrophin and α-dystrobrevin (utrn−/−, adbn−/−; g, h).

Similar content being viewed by others

References

  1. Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  Google Scholar 

  2. Noakes, P. G., Gautam, M., Mudd, J., Sanes, J. R. & Merlie, J. P. Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin β2. Nature 374, 258–262 (1995).

    Article  CAS  Google Scholar 

  3. Burgess, R. W., Nguyen, Q. T., Son, Y. J., Lichtman, J. W. & Sanes, J. R. Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 23, 33–44 (1999).

    Article  CAS  Google Scholar 

  4. Patton, B. L., Miner, J. H., Chiu, A. Y. & Sanes, J. R. Localization, regulation and function of laminins in the neuromuscular system of developing, adult and mutant mice. J. Cell Biol. 139, 1507–1521 (1997).

    Article  CAS  Google Scholar 

  5. Colognato, H. & Yurchenco, P. D. Form and function: the laminin family of heterotrimers. Dev. Dyn. 218, 213–234 (2000).

    Article  CAS  Google Scholar 

  6. Sanes, J. R., Marshall, L. M. & McMahan, U. J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J. Cell Biol. 78, 176–198 (1978).

    Article  CAS  Google Scholar 

  7. Hunter, D. D., Shah, V., Merlie, J. P. & Sanes, J. R. Laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338, 229–234 (1989).

    Article  CAS  Google Scholar 

  8. Sanes, J. R., Engvall, E., Butkowski, R. & Hunter, D. D. Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J. Cell Biol. 111, 1685–1699 (1990).

    Article  CAS  Google Scholar 

  9. Porter, B. E., Weis, J. & Sanes, J. R. A motoneuron-selective stop signal in the synaptic protein, s-laminin. Neuron 14, 549–559 (1995).

    Article  CAS  Google Scholar 

  10. Cho, S. I., Ko, J., Patton, B. L., Sanes, J. R. & Chiu, A. Y. Motor neurons and Schwann cells distinguish between synaptic and extrasynaptic isoforms of laminin. J. Neurobiol. 37, 339–358 (1998).

    Article  CAS  Google Scholar 

  11. Son, Y. J., Patton, B. L. & Sanes, J. R. Induction of presynaptic differentiation in cultured neurons by extracellular matrix components. Eur. J. Neurosci. 11, 3457–3467 (1999).

    Article  Google Scholar 

  12. Patton, B. L., Chiu, A. Y. & Sanes, J. R. Synaptic laminin prevents glial entry into the synaptic cleft. Nature 393, 698–701 (1998).

    Article  CAS  Google Scholar 

  13. Martin, P. T., Ettinger, A. M. & Sanes, J. R. A synaptic localization domain in the synaptic cleft protein laminin β2 (s-laminin). Science 269, 413–416 (1995).

    Article  CAS  Google Scholar 

  14. Reese, T. et al. Cytoprotection does not preserve brain functionality in rats during the acute post-stroke phase despite evidence of non-infarction provided by MRI. NMR Biomed. 13, 361–370 (2000).

    Article  CAS  Google Scholar 

  15. Ringelmann, B. et al. Expression of laminin alpha1, alpha2, alpha4, and alpha5 chains, fibronectin, and tenascin-C in skeletal muscle of dystrophic 129Rej dy/dy mice. Exp. Cell Res. 246, 165–182 (1999).

    Article  CAS  Google Scholar 

  16. Patton, B. L. et al. Distribution of ten laminin chains in dystrophic and regenerating muscles. Neuromuscul. Disord. 9, 423–433 (1999).

    Article  CAS  Google Scholar 

  17. Marques, M. J., Conchello, J. A. & Lichtman, J. W. From plaque to pretzel: fold formation and acetylcholine receptor loss at the developing neuromuscular junction. J. Neurosci. 20, 3663–3675 (2000).

    Article  CAS  Google Scholar 

  18. Miner, J. H. et al. The laminin α chains: Expression, developmental transitions, and chromosomal locations of α1–5, identification of heterotrimeric laminins 8–11, and cloning of a novel α3 isoform. J. Cell Biol. 137, 685–701 (1997).

    Article  Google Scholar 

  19. Matthews-Bellinger, J. A. & Salpeter, M. M. Fine structural distribution of acetylcholine receptors at developing mouse neuromuscular junctions. J. Neurosci. 3, 644–657 (1983).

    Article  CAS  Google Scholar 

  20. Gilbert, J. J., Steinberg, M. D. & Banker, B. Q. Ultrastructural alterations of the motor end plate in myotonic dystrophy of the mouse (dy2J dy2J). J. Neuropathol. Exp. Neurol. 32, 345–364 (1973).

    Article  CAS  Google Scholar 

  21. Law, P. K., Saito, A. & Fleischer, S. Ultrastructural changes in muscle and motor end-plate of the dystrophic mouse. Exp. Neurology 80, 361–382 (1983).

    Article  CAS  Google Scholar 

  22. Grady, R. M. et al. Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin glycoprotein complex. Neuron 25, 279–293 (2000).

    Article  CAS  Google Scholar 

  23. Bloch, R. J. & Pumplin, D. W. Molecular events in synaptogenesis: nerve–muscle adhesion and postsynaptic differentiation. Am. J. Physiol. 254, C345–364 (1988).

    Article  CAS  Google Scholar 

  24. Prokop, A., Landgraf, M., Rushton, E., Broadie, K. & Bate, M. Presynaptic development at the Drosophila neuromuscular junction: assembly and localization of presynaptic active zones. Neuron 17, 617–626 (1996).

    Article  CAS  Google Scholar 

  25. Grady, R. M. et al. Role for α-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat. Cell Biol. 1, 215–220 (1999).

    Article  CAS  Google Scholar 

  26. Sunderland, W. J., Son, Y. J., Miner, J. H., Sanes, J. R. & Carlson, S. S. The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (α4β2γ1) with non-erythroid spectrin. J. Neurosci. 20, 1009–1019 (2000).

    Article  CAS  Google Scholar 

  27. Son, Y. J. et al. The synaptic vesicle protein SV2 is complexed with an α5-containing laminin on the nerve terminal surface. J. Biol. Chem . 275, 451–460 (2000).

    Article  CAS  Google Scholar 

  28. Robitaille, R., Adler, E. M. & Charlton, M. P. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 5, 773–779 (1990).

    Article  CAS  Google Scholar 

  29. Cohen, M. W., Jones, O. T. & Angelides, K. J. Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent omega-conotoxin. J. Neurosci. 11, 1032–1039 (1991).

    Article  CAS  Google Scholar 

  30. Cohen, M. W., Hoffstrom, B. G. & DeSimone, D. W. Active zones on motor nerve terminals contain α3β1 integrin. J. Neurosci. 20, 4912–4921 (2000).

    Article  CAS  Google Scholar 

  31. Miner, J. H., Cunningham, J. M. & Sanes, J. R. Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin α5 chain. J. Cell Biol. 143, 1713–1723 (1998).

    Article  CAS  Google Scholar 

  32. Meriney, S. D., Wolowske, B., Ezzati, E. & Grinnell, A. D. Low calcium-induced disruption of active zone structure and function at the frog neuromuscular junction. Synapse 24, 1–11 (1996).

    Article  CAS  Google Scholar 

  33. Wood, S. J. & Slater, C. R. The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast- and slow-twitch muscles. J. Physiol. (Lond.) 500, 165–176 (1997).

    Article  CAS  Google Scholar 

  34. Uteshev, V. V., Patlak, J. B. & Pennefather, P. S. Analysis and implications of equivalent uniform approximations of nonuniform unitary synaptic systems Biophys J. 79, 2825–2839 (2000).

    Article  CAS  Google Scholar 

  35. Xie, X., Liaw, J. S., Baudry, M. & Berger, T. W. Novel expression mechanism for synaptic potentiation: alignment of presynaptic release site and postsynaptic receptor. Proc. Natl. Acad. Sci. USA 94, 6983–6988 (1997).

    Article  CAS  Google Scholar 

  36. Johansson, C. et al. Isometric force and endurance in soleus muscle of thyroid hormone receptor-alpha(1)- or -beta-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol . 278, R598–603 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Sorokin and P. Yurchenco for antibodies, and Y. Tarumi for light microscopic morphometry. This work was supported by grants from the N.I.H. to J.R.S., from the M.D.A. to B.L.P and from the Swedish M.R.C. to H.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce L. Patton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patton, B., Cunningham, J., Thyboll, J. et al. Properly formed but improperly localized synaptic specializations in the absence of laminin α4. Nat Neurosci 4, 597–604 (2001). https://doi.org/10.1038/88414

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing