Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA shuffling method for generating highly recombined genes and evolved enzymes

Abstract

We introduce a method of in vitro recombination or “DNA shuffling” to generate libraries of evolved enzymes. The approach relies on the ordering, trimming, and joining of randomly cleaved parental DNA fragments annealed to a transient polynucleotide scaffold. We generated chimeric libraries averaging 14.0 crossovers per gene, a several-fold higher level of recombination than observed for other methods. We also observed an unprecedented four crossovers per gene in regions of 10 or fewer bases of sequence identity. These properties allow generation of chimeras unavailable by other methods. We detected no unshuffled parental clones or duplicated “sibling” chimeras, and relatively few inactive clones. We demonstrated the method by molecular breeding of a monooxygenase for increased rate and extent of biodesulfurization on complex substrates, as well as for 20-fold faster conversion of a nonnatural substrate. This method represents a conceptually distinct and improved alternative to sexual PCR for gene family shuffling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Random chimeragenesis on transient templates (RACHITT).
Figure 2: RACHITT generates highly mosaic shuffled proteins.
Figure 3: RACHITT-derived chimeric genes exhibit high-frequency recombination at closely spaced parental sequence polymorphisms (alleles).
Figure 4: Rate screen of the dszC chimeric library reveals improved clones.
Figure 5: Clones simultaneously improved for both rate and extent of substrate oxidation are identified by sequential selection and screening.
Figure 6: Evolution of substrate range. (A) A high level of phenotypic diversity is generated from the chimeric library.

Similar content being viewed by others

References

  1. Kikuchi, M., Ohnishi, K. & Harayama, S. An effective family shuffling method using single-stranded DNA. Gene 243, 133–137 (2000).

    Article  CAS  Google Scholar 

  2. Lorimer, I.A. & Pastan, I. Random recombination of antibody single chain Fv sequences after fragmentation with DNaseI in the presence of Mn2+. Nucleic Acids Res. 23, 3067–3068 (1995).

    Article  CAS  Google Scholar 

  3. Shao, Z., Zhao, H., Giver, L. & Arnold, F.H. Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res. 26, 681–683 (1998).

    Article  CAS  Google Scholar 

  4. Stemmer, W.P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747–10751 (1994).

    Article  CAS  Google Scholar 

  5. Stemmer, W.P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    Article  CAS  Google Scholar 

  6. Zhao, H. & Arnold, F.H. Optimization of DNA shuffling for high fidelity recombination. Nucleic Acids Res. 25, 1307–1308 (1997).

    Article  CAS  Google Scholar 

  7. Levichkin, I.V., Shul'ga, A.A., Kurbanov, F.T. & Kirpichnikov, M.P. A new method of designing hybrid genes—the homolog recombination method. Mol. Biol. (Mosk). 29, 983–991 (1995).

    CAS  PubMed  Google Scholar 

  8. Zhao, H., Giver, L., Shao, Z., Affholter, J.A. & Arnold, F.H. Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261 (1998).

    Article  CAS  Google Scholar 

  9. Piddington, C.S., Kovacevich, B.R. & Rambosek, J. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 61, 468–475 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fridrick, C. et al. Isolation and characterization of a biodesulfurizing Nocardia sp. In Abstracts of the 99th General Meeting of the American Society for Microbiology, Abstr. O–23 500. (American Society for Microbiology, Washington, DC; 1999).

    Google Scholar 

  11. Levinson, W., Coco, W., Crist, M., Fridrick, C. & Pienkos, P. Directed evolution of DBT monooxygenase using growth on biodesulfurized diesel oil as a selection and screening strategy. In Abstracts of the Annual Meeting of the Society for Industrial Microbiology, San Diego, Abstr. P31 128. (Society for Industrial Microbiology, Fairfax, VA; 2000).

    Google Scholar 

  12. Eckert, K.A. & Kunkel, T.A. The fidelity of DNA polymerase used in the polymerase chain reactions. In PCR. A practical approach. (eds McPherson, M.J., Quirke, P. & Taylor, G.R.) 225–244 (IRL Press, Washington, DC; 1991).

    Google Scholar 

  13. Arensdorf, J.J. & Pienkos, P. Biotransformations of model sulfur compounds by Rhodococcus. In Abstracts of the 100th General Meeting of the American Society for Microbiology, Los Angeles, Abstr. O–24 501. (American Society for Microbiology, Washington, DC; 2000).

    Google Scholar 

  14. Lei, B. & Tu, S.C. Gene overexpression, purification, and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase. J. Bacteriol. 178, 5699–5705 (1996).

    Article  CAS  Google Scholar 

  15. Denome, S.A., Oldfield, C., Nash, L.J. & Young, K.D. Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. J. Bacteriol. 176, 6707–6716 (1994).

    Article  CAS  Google Scholar 

  16. Oldfield, C., Pogrebinsky, O., Simmonds, J., Olson, E.S. & Kulpa, C.F. Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143, 2961–2973 (1997).

    Article  CAS  Google Scholar 

  17. Charlesworth, B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet. Res. 55, 199–221 (1990).

    Article  CAS  Google Scholar 

  18. Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Felsenstein, J. & Yokoyama, S. The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics 83, 845–859 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kondrashov, A.S. Deleterious mutations as an evolutionary factor. 1. The advantage of recombination. Genet. Res. 44, 199–217 (1984).

    Article  CAS  Google Scholar 

  21. Minshull, J. & Stemmer, W.P. Protein evolution by molecular breeding. Curr. Opin. Chem. Biol. 3, 284–290 (1999).

    Article  CAS  Google Scholar 

  22. Ostermeier, M., Nixon, A.E. & Benkovic, S.J. Incremental truncation as a strategy in the engineering of novel biocatalysts. Bioorg. Med. Chem. 7, 2139–2144 (1999).

    Article  CAS  Google Scholar 

  23. Crameri, A., Raillard, S.A., Bermudez, E. & Stemmer, W.P. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    Article  CAS  Google Scholar 

  24. Kumamaru, T., Suenaga, H., Mitsuoka, M., Watanabe, T. & Furukawa, K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16, 663–666 (1998).

    Article  CAS  Google Scholar 

  25. Christians, F.C., Scapozza, L., Crameri, A., Folkers, G. & Stemmer, W.P. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling. Nat. Biotechnol. 17, 259–264 (1999).

    Article  CAS  Google Scholar 

  26. Barany, F. The ligase chain reaction in a PCR world. PCR Methods Appl. 1, 5–16 (1991).

    Article  CAS  Google Scholar 

  27. Luo, J., Bergstrom, D.E. & Barany, F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 24, 3071–3078 (1996).

    Article  CAS  Google Scholar 

  28. Shuman, S. Vaccinia virus DNA ligase: specificity, fidelity, and inhibition. Biochemistry (Mosc). 34, 16138–16147 (1995).

    Article  CAS  Google Scholar 

  29. Sriskanda, V. & Shuman, S. Specificity and fidelity of strand joining by Chlorella virus DNA ligase. Nucleic Acids Res. 26, 3536–3541 (1998).

    Article  CAS  Google Scholar 

  30. Kwok, S. et al. Effects of primer–template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 18, 999–1005. (1990).

    Article  CAS  Google Scholar 

  31. Coco, W.M., Crist, M., Levinson, W.E. & Darzins, A. A novel method of gene family shuffling relieves simultaneous bottlenecks in a highly engineered pathway. In Abstracts of the Society for Industrial Microbiology Annual Meeting, San Diego, Abstr. P30 97. (Society for Industrial Microbiology, Fairfax, VA; 2000).

    Google Scholar 

  32. Moore, J.C., Jin, H.M., Kuchner, O. & Arnold, F.H. Strategies for the in vitro evolution of protein function: enzyme evolution by random recombination of improved sequences. J. Mol. Biol. 272, 336–347 (1997).

    Article  CAS  Google Scholar 

  33. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning, Edn. 2. (Cold Spring Harbor Laboratory Press, Plainview, New York; 1989).

    Google Scholar 

  34. Liu, W.E., Tan, D. & Zhang, Z. Serum HBV DNA detected by polymerase chain reaction with dUTP/uracil– DNA glycosylase. Hunan I. Ko Ta Hsueh Hsueh Pao 23, 278–280 (1998).

    CAS  PubMed  Google Scholar 

  35. Lyamichev, V., Brow, M.A. & Dahlberg, J.E. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260, 778–783 (1993).

    Article  CAS  Google Scholar 

  36. Bigey, F., Grossiord, B., Chan Kuo Chion, C.K., Arnaud, A. & Galzy, P. Brevibacterium linens pBL33 and Rhodococcus rhodochrous pRC1 cryptic plasmids replicate in Rhodococcus sp. R312 (formerly Brevibacterium sp. R312). Gene 154, 77–79 (1995).

    Article  CAS  Google Scholar 

  37. O'Connor, K.E., Dobson, A.D. & Hartmans, S. Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl. Environ. Microbiol. 63, 4287–4291 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Enchira high-throughput screening and analytical chemistry groups for expert technical assistance; G. Mrachko, B. Blattmann, J. Arensdorf, E. Lange, J. Blanton, B. Folsom, U. Coco, J. Bryson, and L. Encell for developing additional assays, assistance with figures, statistical analyses and critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne M. Coco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coco, W., Levinson, W., Crist, M. et al. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19, 354–359 (2001). https://doi.org/10.1038/86744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing