Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade

Abstract

Activation of mitogen-activated protein kinase (MAPK) pathways leads to cellular differentiation and/or proliferation in a wide variety of cell types, including developing thymocytes. The basic helix-loop-helix (bHLH) proteins E12 and E47 and an inhibitor HLH protein, Id3, play key roles in thymocyte differentiation. We show here that E2A DNA binding is lowered in primary immature thymocytes consequent to T cell receptor (TCR)-mediated ligation. Whereas expression of E2A mRNA and protein are unaltered, Id3 transcripts are rapidly induced upon signaling from the TCR. Activation of Id3 transcription is regulated in a dose-dependent manner by the extracellular signal-regulated kinase (ERK) MAPK module. These observations directly connect the ERK MAPK cascade and HLH proteins in a linear pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E-box binding activity and HLH expression in TCR-stimulated immature thymocytes.
Figure 2: Id3 transcription is induced in immature thymocytes by PMA through the ERK MAPK pathway.
Figure 3: Id3 transcription is induced through TCR-mediated activation of the ERK MAPK pathway.
Figure 4: Constitutively active forms of p56lck and MEK1 induce Id3 transcription in the immature DP T cell line 16610D9.
Figure 5: Inhibition of the Id3 induction in thymocytes expressing a DN-Ras transgene.
Figure 6: Transcriptional activation of Id3 is indirect and can be mediated by EGR1.
Figure 7: EGR1 expression is activated by the ERK MAPK pathway before Id3 and activates Id3 transcription.

Similar content being viewed by others

References

  1. Murre, C. et al. Structure and function of helix-loop-helix proteins. Biochim. Biophys. Acta 1218, 129–135 (1994).

    Article  CAS  Google Scholar 

  2. Naya, F. J. et al. Diabetes, defective pancreatic morphogenesis, abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev. 11, 2323–2334 (1997).

    Article  CAS  Google Scholar 

  3. Lee, J. E. et al. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836–844 (1995).

    Article  CAS  Google Scholar 

  4. Lassar, A. B. et al. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66, 305–315 (1991).

    Article  CAS  Google Scholar 

  5. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892. (1994).

    Article  CAS  Google Scholar 

  6. Zhuang, Y., Soriano, P. & Weintraub, H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884. (1994).

    Article  CAS  Google Scholar 

  7. Bain, G. et al. E2A deficiency leads to abnormalities in αβ T cell development and to the rapid development of T cell lymphomas. Mol. Cell. Biol. 17, 4782–4791 (1997).

    Article  CAS  Google Scholar 

  8. Barndt, R., Dai, M. & Zhuang, Y. A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during αβ thymopoiesis. J. Immunol. 163, 3331–3343 (1999).

    CAS  Google Scholar 

  9. Zhuang, Y., Cheng, P. & Weintraub, H. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol. Cell. Biol. 16, 2898–2905 (1996).

    Article  CAS  Google Scholar 

  10. Bain, G., Quong, M. W., Soloff, R. S., Hedrick, S. M. & Murre, C. Thymocyte maturation is regulated by the activity of the helix-loop-helix protein, E47. J. Exp. Med. 190, 1605–1616 (1999).

    Article  CAS  Google Scholar 

  11. Yan, W. et al. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol. Cell. Biol. 17, 7317–7327 (1997).

    Article  CAS  Google Scholar 

  12. Engel, I. & Murre, C. Ectopic expression of E47 or E12 promotes the death of E2A-deficient lymphomas. Proc. Natl Acad. Sci. USA 96, 996–1001 (1999).

    Article  CAS  Google Scholar 

  13. Park, S. T., Nolan, G. P. & Sun, X.-H. Growth inhibition and apoptosis due to restoration of E2A activity in T cell acute lymphoblastic leukemia cells. J. Exp. Med. 189, 501–508 (1998).

    Article  Google Scholar 

  14. Engel, I. & Murre, C. Transcription factors in hematopoiesis. Curr. Opin. Gen. Dev. 9, 575–579 (1999).

    Article  CAS  Google Scholar 

  15. Norton, J. D., Deed, R. W., Craggs, G. & Sablitzky, F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 8, 58–65 (1998).

    CAS  Google Scholar 

  16. Pan, L., Sato, S., Frederick, J. P., Sun, X.-H. & Zhaung, Y. Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene. Mol. Cell. Biol. 19, 5969–5980 (1999).

    Article  CAS  Google Scholar 

  17. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  Google Scholar 

  18. Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumor xenografts. Nature 401, 670–677 (1999).

    Article  CAS  Google Scholar 

  19. Rivera, R. R., Johns, C. P., Quan, J., Johnson, R. S. & Murre, C. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 12, 17–26 (2000).

    Article  CAS  Google Scholar 

  20. Jameson, S., Hogquist, K. & Bevan, M. Positive selection of thymocytes. Annu. Rev. Immunol. 13, 93–126 (1995).

    Article  CAS  Google Scholar 

  21. Jameson, S. & Bevan, M. T-cell selection. Curr. Opin. Immunol. 10, 214–219 (1998).

    Article  CAS  Google Scholar 

  22. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).

    Article  CAS  Google Scholar 

  23. Hashimoto, K. et al. Requirement for p56lck tyrosine kinase activation in T cell receptor-mediated thymic selection. J. Exp. Med. 184, 931–943 (1996).

    Article  CAS  Google Scholar 

  24. Cheng, A. & Chan, A. Protein tyrosine kinases in thymocyte development. Curr. Opin. Immunol. 9, 528–533 (1997).

    Article  CAS  Google Scholar 

  25. Alberola-Ila, J., Takaki, S., Kerner, J. & Perlmutter, R. Differential signaling by lymphocyte antigen receptors. Annu. Rev. Immunol. 15, 125–154 (1997).

    Article  CAS  Google Scholar 

  26. Law, C. L., Chandran, K. A., Sidorenko, S. P. & Clark, E. A. Phospholipase C-γ1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk. Mol. Cell. Biol. 16, 1305–1315 (1996).

    Article  CAS  Google Scholar 

  27. Griffith, C. E., Zhang, W. & Wange, R. L. ZAP-70-dependent and -independent activation of Erk in Jurkat T cells. Differences in signaling induced by H2O2 and CD3 cross-linking. J. Biol. Chem. 273, 10771–10776 (1998).

    Article  CAS  Google Scholar 

  28. van Oers, N. S. & Weiss, A. The Syk/ZAP-70 protein tyrosine kinase: connection to antigen receptor signalling processes. Semin. Immunol. 7, 227–236 (1995).

    Article  CAS  Google Scholar 

  29. Williams, B. L. et al. Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-γ1 and ras activation. EMBO J. 18, 1832–1844 (1999).

    Article  CAS  Google Scholar 

  30. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).

    Article  CAS  Google Scholar 

  31. Pages, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286, 1374–1377 (1999).

    Article  CAS  Google Scholar 

  32. Alberola-Ila, J., Forbush, K., Seger, R., Krebs, E. & Perlmutter, R. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623 (1995).

    Article  CAS  Google Scholar 

  33. Kolch, W. et al. Protein kinase C α activates Raf-1 by direct phosphorylation. Nature 364, 249–252 (1993).

    Article  CAS  Google Scholar 

  34. Marquardt, B., Frith, D. & Stabel, S. Signaling from TPA to MAP kinase requires protein kinase C, raf and MEK: reconstitution of the signaling pathway in vitro. Oncogene 9, 3213–3218 (1994).

    CAS  Google Scholar 

  35. Qui, Z. & Leslie, C. Protein kinase C-dependent and -independent pathways of mitogen-activated protein kinase activation in macrophages by stimuli that activate phospholipase A2. J. Biol. Chem. 269, 19480–19487 (1994).

    Google Scholar 

  36. Sharp, L., Schwarz, D., Bott, C., Marshall, C. & Hedrick, S. The influence of the MAPK pathway on T cell lineage commitment. Immunity 7, 609–618 (1997).

    Article  CAS  Google Scholar 

  37. Alessi, D., Cuenda, A., Cohen, P., Dudley, D. & Saltiel, A. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270, 27489–27494 (1995).

    Article  CAS  Google Scholar 

  38. Dudley, D., Pang, L., Decker, S., Bridges, A. & Saltiel, A. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 92, 7686–7689 (1995).

    Article  CAS  Google Scholar 

  39. Alberola-Ila, J., Hogquist, K. A., Swan, K. A., Bevan, M. J. & Perlmutter, R. M. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184, 9–18 (1996).

    Article  CAS  Google Scholar 

  40. Shao, H., Kono, D. H., Chen, L.-Y., Rubin, E. M. & Kaye, J. Induction of the Early Growth Response (Egr) family of transcription factors during thymic selection. J. Exp. Med. 185, 731–744 (1997).

    Article  CAS  Google Scholar 

  41. Shao, H., Wilkinson, B., Lee, B., Han, P.-C. & Kaye, J. Slow accumulation of active mitogen-activated protein kinase during thymocyte differentiation regulates the temporal pattern of transcription factor gene expression. J. Immunol. 163, 603–610 (1999).

    CAS  Google Scholar 

  42. Miyazaki, T. & Lemonnier, F. A. Modulation of thymic selection by expression of an immediate-early gene, Early Growth Response 1 (Egr-1). J. Exp. Med. 188, 715–723 (1998).

    Article  CAS  Google Scholar 

  43. Topilko, P. et al. Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mice. Mol. Endocrin. 12, 107–122 (1997).

    Article  Google Scholar 

  44. Abraham, K., Levin, S., Marth, J., Forbush, K. & Perlmutter, R. Thymic tumorigenesis induced by overexpression of p56lck. Proc. Natl Acad. Sci. USA 88, 3977–3981 (1991).

    Article  CAS  Google Scholar 

  45. Kim, D., Peng, X.-C. & Sun, X.-H. Massive apoptosis of thymocytes in T-cell deficient Id1 transgenic mice. Mol. Cell. Biol. 19, 8240–8253 (1999).

    Article  CAS  Google Scholar 

  46. Morrow, M. A., Mayer, E. W., Perez, C. A., Adlam, M. & Siu, G. Overexpression of the helix-loop-helix protein Id2 blocks T cell development at multiple stages. Mol. Immunol. 36, 491–503 (1999).

    Article  CAS  Google Scholar 

  47. Salmeron, A. et al. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J. 15, 817–826 (1996).

    Article  CAS  Google Scholar 

  48. Patriotis, C., Makris, A., Chernoff, J. & Tsichlis, P. N. Tpl-2 acts in concert with Ras and Raf-1 to activate mitogen-activated protein kinase. Proc. Natl Acad. Sci. USA 91, 9755–9759 (1994).

    Article  CAS  Google Scholar 

  49. Hagemann, D., Troppmair, J. & Rapp, U. R. Cot protooncoprotein activates the dual specificity kinases MEK-1 and SEK-1 and induces differentiation of PC12 cells. Oncogene 18, 1391–1400 (1999).

    Article  CAS  Google Scholar 

  50. Patriotis, C., Makris, A., Bear, S. E. & Tsichlis, P. N. Tumor progression locus 2 (Tpl-2) encodes a protein kinase involved in the progression of rodent T-cell lymphomas and in T-cell activation. Proc. Natl Acad. Sci. USA 90, 2251–2255 (1993).

    Article  CAS  Google Scholar 

  51. Makris, A., Patriotis, C., Bear, S. E. & Tsichlis, P. N. Genomic organization and expression of Tpl-2 in normal cells and Moloney murine leukemia virus-induced rat T-cell lymphomas: activation by provirus insertion. J. Virol. 67, 4283–4289 (1993).

    CAS  Google Scholar 

  52. Bain, G., Gruenwald, S. & Murre, C. E2A and E2-2 are subunits of B-Cell-specific E2-box DNA-binding proteins. Mol. Cell. Biol. 13, 3522–3529 (1993).

    Article  CAS  Google Scholar 

  53. Singh, H., Sen, R., Baltimore, D. & Sharp, P. A. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319, 154–158 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Karin for the MKK1-ED cDNA; B. Sefton for the LckF505 cDNA and R. Rivera for the Id3 northern probe. Supported, in part, by the California Division-American Cancer Society, Fellowship number 1-3-00 (to G. B.) and the National Institutes of Health (to C. M., J. A. and S. H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis Murre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bain, G., Cravatt, C., Loomans, C. et al. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat Immunol 2, 165–171 (2001). https://doi.org/10.1038/84273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing