Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter

An Erratum to this article was published on 01 September 1999

Abstract

The mechanism by which Cu2+/Zn2+ superoxide dismutase (SOD1) mutants lead to motor neuron degeneration in familial amyotrophic lateral sclerosis (FALS) is unknown. We show that oxidative reactions triggered by hydrogen peroxide and catalyzed by A4V and I113T mutant but not wild-type SOD1 inactivated the glutamate transporter human GLT1. Chelation of the copper ion of the prosthetic group of A4V prevented GLT1 inhibition. GLT1 was a selective target of oxidation mediated by SOD1 mutants, and its reactivity was confined to the intracellular carboxyl-terminal domain. The antioxidant Mn(III)TBAP rescued GLT1 from inhibition. Because inactivation of GLT1 results in neuronal degeneration, we propose that toxic properties of SOD1 mutants lead to neuronal death via an excitotoxic mechanism in SOD1-linked FALS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunodetection of human SOD1 and human GLT1.
Figure 2: Activity of A4V and I113T mutants causes impairment of human GLT1.
Figure 3: Characterization of the A4V mutant SOD1-mediated inhibition of GLT1.
Figure 4: The neuronal glutamate transporter EAAC1 and the metabotropic glutamate receptor 1α are insensitive to the action of SOD1 mutants.
Figure 5: The molecular determinant of the sensitivity to A4V mutant SOD1 activity resides in the intracellular carboxyl-terminal domain of GLT1.
Figure 6: A4V-induced inhibition of GLT1 is reversed by the manganic(III) porphyrin MnTBAP.
Figure 7: Age-dependent GLT1 inhibition by SOD1 mutants A4V and I113T.

Similar content being viewed by others

References

  1. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  Google Scholar 

  2. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  Google Scholar 

  3. Bruijn, L. I. et al. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant. Proc. Natl. Acad. Sci. USA 94, 7606– 7611 (1997).

    Article  CAS  Google Scholar 

  4. Bogdanov, M. B., Ramos, L. E., Xu, Z. & Beal, M. F. Elevated hydroxyl radical generation in vivo in an animal model of amyotrophic lateral sclerosis. J. Neurochem. 71, 1321– 1324 (1998).

    Article  CAS  Google Scholar 

  5. Ferrante, R. J. et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J. Neurochem. 69, 2064–2074 (1997).

    Article  CAS  Google Scholar 

  6. Borchelt, D. R. et al. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. USA 91, 8292–8296 ( 1994).

    Article  CAS  Google Scholar 

  7. Borchelt, D. R. et al. Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not affect wild-type subunit function. J. Biol. Chem. 270, 3234–3238 (1995).

    Article  CAS  Google Scholar 

  8. Deng, H-X. et al. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261, 1047– 1051 (1993).

    Article  CAS  Google Scholar 

  9. Yim, H-S., Kang, J-H., Chock, P. B., Stadtman, E. R. & Yim, M. B. A familial amyotrophic lateral sclerosis-associated A4V Cu, Zn superoxide dismutase mutant has a lower Km for hydrogen peroxide. Correlation between clinical severity and the Km value. J. Biol. Chem. 272, 8861– 8863 (1997).

    Article  CAS  Google Scholar 

  10. Wiedau-Pazos, M. et al. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271, 515– 518 (1996).

    Article  CAS  Google Scholar 

  11. Yim, M. B. et al. A gain of function of an amyotrophic lateral sclerosis-associated Cu, Zn superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc. Natl. Acad. Sci. USA 93, 5709–5714 (1996).

    Article  CAS  Google Scholar 

  12. Rothstein, J. D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686 ( 1996).

    Article  CAS  Google Scholar 

  13. Haugeto, O. et al. Brain glutamate transporter proteins form homomultimers. J. Biol. Chem. 271, 27715–27722 (1996).

    Article  CAS  Google Scholar 

  14. Lehre, K. P. & Danbolt, N. C. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18, 8751–8757 (1998).

    Article  CAS  Google Scholar 

  15. Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med. 326, 1464–1468 (1992).

    Article  CAS  Google Scholar 

  16. Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L. J. & Kuncl, R. W. Selective loss of glial glutamate transporter GLT1 in amyotrophic lateral sclerosis. Ann. Neurol. 38, 73–84 ( 1995).

    Article  CAS  Google Scholar 

  17. Bristol, L. A. & Rothstein, J. D. Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann. Neurol. 39, 676–679 (1996).

    Article  CAS  Google Scholar 

  18. Aoki, M. et al. Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann. Neurol. 43, 645–653 ( 1998).

    Article  CAS  Google Scholar 

  19. Lin, C-L. G. et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20, 589–602 (1998).

    Article  CAS  Google Scholar 

  20. Canton, T., Pratt, J., Stutzmann, J-M., Imperato, A. & Boireau, A. Glutamate uptake is decreased tardively in the spinal cord of FALS mice. Neuroreport 9, 775–778 (1998).

    Article  CAS  Google Scholar 

  21. Bruijin, L. I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  Google Scholar 

  22. Pedersen, W. A. et al. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 44, 819–824 (1998).

    Article  CAS  Google Scholar 

  23. Trotti, D. et al. Peroxynitrite inhibits glutamate transporter subtypes. J. Biol. Chem. 271, 5976–5979 (1996).

    Article  CAS  Google Scholar 

  24. Trotti, D., Nussberger, S., Volterra, A. & Hediger, M. A. Differential modulation of the uptake currents by redox interconversion of cysteine residues in the human neuronal glutamate transporter EAAC1. Eur. J. Neurosci. 9, 2207–2212 (1997).

    Article  CAS  Google Scholar 

  25. Trotti, D., Danbolt, N. C. & Volterra, A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol. Sci. 19, 328–334 (1998).

    Article  CAS  Google Scholar 

  26. Taylor, P. M., Kaur, S., Mackenzie, B. & Peter, G. J. Amino-acid-dependent modulation of amino acid transporter in Xenopus laevis oocytes. J. Exp. Biol. 199, 923–931 (1996).

    CAS  PubMed  Google Scholar 

  27. Robberecht, W. et al. Cu/Zn superoxide dismutase activity in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 62, 384–387 (1994).

    Article  CAS  Google Scholar 

  28. Tu, P-H., Gurney, M. E., Julien, J-P., Lee, V. M. & Trojanowski, J. Q. Oxidative stress, mutant SOD1, and neurofilament pathology in transgenic mouse models of human motor neuron disease. Lab. Invest. 76, 441– 456 (1997).

    CAS  PubMed  Google Scholar 

  29. Siddique, T. & Deng, H. X. Genetics of amyotrophic lateral sclerosis. Hum. Mol. Gen. 5, 1465– 1470 (1996).

    Article  CAS  Google Scholar 

  30. Gillis, K. D. in Single Channel Recording 2nd edn. (eds. Sakmann, B. & Neher, E.) 155–198 (Plenum, New York, 1995).

    Book  Google Scholar 

  31. Davies, K. J., Delsignore, M. E. & Lin, S. W. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J. Biol. Chem. 262 , 9902–9907 (1987).

    CAS  PubMed  Google Scholar 

  32. Zerangue, N. & Kavanaugh, M. P. Flux coupling in a neuronal glutamate transporter. Nature 383, 634– 637 (1996).

    Article  CAS  Google Scholar 

  33. Davies, K. J. Protein damage and degeneration by oxygen radicals. I. General aspects. J. Biol. Chem. 262, 9895–9901 (1987).

    CAS  PubMed  Google Scholar 

  34. Grunewald, M., Bendahan, A. & Kanner, B. I. Biotinylation of single cysteine mutants of the glutamate transporter GLT1 from rat brain reveals its unusual topology. Neuron 21, 623–632 ( 1998).

    Article  CAS  Google Scholar 

  35. Day, B. J., Fridovich, I. & Crapo, J. D. Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch. Biochem. Biophys. 347, 256–262 (1997).

    Article  CAS  Google Scholar 

  36. Batinic-Haberle, I., Liochev, S. I., Spasojevic, I. & Fridovich, I. A potent superoxide dismutase mimic: Manganese β-octabromo-meso-etrakis-(N-methylpyridinium-4-yl) porphyrin. Arch. Biochem. Biophys. 343, 225–233 (1997).

    Article  CAS  Google Scholar 

  37. Mu, X., He, J., Anderson, D. W., Trojanowski, J. Q. & Springer, J. E. Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Ann. Neurol. 40, 379–386 (1996).

    Article  CAS  Google Scholar 

  38. Eisen, A. Amyotrophic lateral sclerosis is a multifactorial disease. Muscle Nerve 18, 741–752 ( 1995).

    Article  CAS  Google Scholar 

  39. Brown, R. H. Jr. Free radicals, programmed cell death and muscular dystrophy. Curr. Opin. Neurol. 8, 373– 378 (1995).

    Article  CAS  Google Scholar 

  40. Brown, R. H. Jr. Amyotrophic lateral sclerosis: recent insights from genetics and transgenic mice. Cell 80, 687– 692 (1995).

    Article  CAS  Google Scholar 

  41. van Iwaarden, P. R., Driessen, A. J. & Koning, W. N. What we can learn from the effects of thiol reagents on transport proteins. Biochem. Biophys. Acta 1113, 161–170 (1992).

    CAS  PubMed  Google Scholar 

  42. Davies, K. J. A. & Delsignore, M. E. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J. Biol. Chem. 262, 9908–9913 (1987).

    CAS  PubMed  Google Scholar 

  43. Davies, K. J. A., Lin, S. W. & Pacifici, R. E. Protein damage and degradation by oxygen radicals. IV. Degradation of denatured protein. J. Biol. Chem. 262, 9914–9920 (1987).

    CAS  PubMed  Google Scholar 

  44. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT1. Science 276, 1699–1702 (1997).

    Article  CAS  Google Scholar 

  45. Bensimon, G., Lacomblez, L. & Meininger, V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/riluzole study group. N. Engl. J. Med. 330, 585–591 (1994).

    Article  CAS  Google Scholar 

  46. Lacomblez, L., Bensimon, G., Leigh, P. N., Guillet, P. & Meininger, V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis/riluzole study group II. Lancet 347, 1425– 1431 (1996).

    Article  CAS  Google Scholar 

  47. Gurney, M. E., Fleck, T. J., Himes, C. S. & Hall, E. D. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology 50, 62– 66 (1998).

    Article  CAS  Google Scholar 

  48. Arriza, J. L. et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14, 5559–5569 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Shayakul for advice in the cloning of human GLT1, P. Fong for providing the vector pTLNII for oocyte expression and P. Pasinelli and Y. Segal for comments on the manuscript. This work was supported by the Paralyzed Veterans of America-SCRF and Telethon-Italy to D.T., the Swiss National Foundation to A.R., a grant from NINDS (NS32001) to M.A.H., ALS Association and Muscular Dystrophy Association to M.A.H. and R.H.B. and the Norwegian Research Council to N.C.D. R.H.B. was also supported by the Pierre L. de Bourgknecht ALS Research Foundation and grants from NINDS (1PO1NS31248-05 and 5F32HS10064) and NIA (1PO1Ag12992-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Davide Trotti or Matthias A. Hediger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trotti, D., Rolfs, A., Danbolt, N. et al. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci 2, 427–433 (1999). https://doi.org/10.1038/8091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing