Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RasGRP is essential for mouse thymocyte differentiation and TCR signaling

Abstract

The Ras signaling pathway plays a critical role in thymopoiesis and T cell activation, but the mechanism of Ras regulation is controversial. At least one mode of Ras regulation in T cells involves the messenger diacylglycerol (DAG). RasGRP, a Ras activator with a DAG-binding C1 domain, is expressed in T cells and thymocytes. Here we show that thymi of RasGRP-null mutant mice have approximately normal numbers of immature thymocytes but a marked deficiency of mature, single-positive (CD4+CD8− and CD4−CD8+) thymocytes. In Ras signaling and proliferation assays, mutant thymocytes showed a complete lack of response to DAG analogs or T cell receptor (TCR) stimulation by antibodies. Thus, TCR and DAG are linked through RasGRP to Ras signaling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of RasGRP mutant mice.
Figure 2: Impaired thymocyte development in RasGRP mutant mice.
Figure 3: Peripheral T and B cell populations in RasGRP mutant mice.
Figure 4: Impaired Ras-Erk signaling in RasGRP mutant thymocytes.
Figure 5: Decreased proliferation in RasGRP mutant thymocytes.
Figure 6: RasGRP expression and agonist-induced Erk activation in RAG-1 double-negative thymocytes.

Similar content being viewed by others

References

  1. Crabtree, G. R. Contingent genetic regulatory events in T lymphocyte activation. Science 243, 355–361 (1989).

    Article  CAS  Google Scholar 

  2. Alberola-Ila, J., Takaki, S., Kerner, J. D. & Perlmutter, R. M. Differential signaling by lymphocyte antigen receptors. Annu. Rev. Immunol. 15, 125–154 (1997).

    Article  CAS  Google Scholar 

  3. Downward, J., Graves, J. D., Warne, P. H., Rayter, S. & Cantrell, D. A. Stimulation of p21ras upon T-cell activation. Nature 346, 719– 723 (1990).

    Article  CAS  Google Scholar 

  4. Egan, S. E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51 (1993).

    Article  CAS  Google Scholar 

  5. Ebinu, J. O. et al. RasGRP, a Ras guanyl nucleotide releasing protein with calcium and diacylglycerol-binding motifs. Science 280, 1082–1086 (1998).

    Article  CAS  Google Scholar 

  6. Kawasaki, H. et al. A Rap guanine nucleotide exchange-factor enriched highly in the basal ganglia. Proc. Natl Acad. Sci. USA 95, 13278–13283 (1998).

    Article  CAS  Google Scholar 

  7. Tognon, C. E. et al. Regulation of RasGRP via a phorbol ester-responsive C1 domain . Mol. Cell. Biol. 18, 6995– 7008 (1998).

    Article  CAS  Google Scholar 

  8. Yamashita, S. et al. CalDAG-GEFIII activation of Ras, R-Ras, and Rap1. J. Biol. Chem. 275, 25488–25493 (2000).

    Article  CAS  Google Scholar 

  9. Ebinu, J. O. et al. RasGRP links T-cell receptor signaling to Ras. Blood 95, 3199–3203 (2000).

    CAS  Google Scholar 

  10. von Boehmer, H. & Fehling, H. J. Structure and function of the pre-T cell receptor. Ann. Rev. Immunol. 15, 433–452 (1997).

    Article  CAS  Google Scholar 

  11. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  12. Molina, T. J. et al. Profound block in thymocyte development in mice lacking p56lck . Nature 357, 161–164 (1992).

    Article  CAS  Google Scholar 

  13. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435– 438 (1995).

    Article  CAS  Google Scholar 

  14. Zhang, W. et al. Essential role of Lat in T cell development. Immunity 10, 323–332 (1999).

    Article  CAS  Google Scholar 

  15. Clements, J. L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419 (1998).

    Article  CAS  Google Scholar 

  16. Swan, K. A. et al. Involvement of p21ras distinguishes positive and negative selection in thymocytes. EMBO J. 14, 276 –285 (1995).

    Article  CAS  Google Scholar 

  17. O'Shea, C. C., Crompton, T., Rosewell, I. R., Hayday, A. C. & Owen, M. J. Raf regulates positive selection . Eur. J. Immunol. 26, 2350– 2355 (1996).

    Article  CAS  Google Scholar 

  18. Crompton, T., Gilmour, K. C. & Owen, M. J. The MAP kinase pathway controls differentiation from double-negative to double-positive thymocyte. Cell 86, 243–251 (1996).

    Article  CAS  Google Scholar 

  19. Sharp, L. L., Schwarz, D. A., Bott, C. M., Marshall, C. J. & Hedrick, S. M. The influence of the MAPK pathway on T cell lineage commitment. Immunity 7, 609–618 (1997).

    Article  CAS  Google Scholar 

  20. Pages, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk1) knockout mice. Science 286, 1374– 1377 (1999).

    Article  CAS  Google Scholar 

  21. Barton, K. et al. Defective thymocyte proliferation and Il-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature 379, 81–85 (1996).

    Article  CAS  Google Scholar 

  22. Pettit, G. R., Herald, C. L., Doubek, D. L. & Herald, D. L. Isolation and structure of bryostatin 1. J. Am. Chem. Soc. 104, 6846–6848 (1982).

    Article  CAS  Google Scholar 

  23. Lorenzo, P. S., Beheshti, M., Pettit, G. R., Stone, J. C. & Blumberg, P. M. The guanine nucleotide exchange factor RasGRP is a high affinity target for diacylglycerol and phorbol esters . Mol. Pharmacol. 57, 840– 846 (2000).

    CAS  Google Scholar 

  24. Hsueh, Y.-P., Liang, H.-E., Ng, S.-Y. & Lai, M.-Z. CD28-costimulation activates cyclic AMP-responsive element binding protein in T lymphocytes. J. Immunol. 158, 85–93 (1997).

    CAS  Google Scholar 

  25. Muthusamy, N. & Leiden, J. M. A protein kinase C-, Ras-, and RSK2-dependent signal transduction pathway activates the cAMP-responsive element-binding protein transcription factor following T cell receptor engagement. J. Biol. Chem. 273, 22841–22847 (1998).

    Article  CAS  Google Scholar 

  26. Han, J., Lee, J.-D., Bibbs, L. & Ulevitch, R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994).

    Article  CAS  Google Scholar 

  27. Iwashima, M., Irving, B. A., vanOers, N. S. C., Chan, A. C. & Weiss, A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263, 1136–1139 (1994).

    Article  CAS  Google Scholar 

  28. Peterson, E. J., Clements, J. L., Fan, N. & Koretzky, G. A. Adaptor proteins in lymphocyte antigen-receptor signaling. Curr. Opin. Immunol. 10, 337–344 (1998).

    Article  CAS  Google Scholar 

  29. Noh, D. Y., Shin, S. H. & Rhee, S. G. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim. Biophys. Acta 1242, 99–114 (1995).

    Google Scholar 

  30. Izquierdo, M., Downward, J., Graves, J. D. & Cantrell, D. A. The role of protein kinase C in T cell antigen receptor regulation of p21ras: evidence that two p21ras regulatory pathways coexist in T cells. Mol. Cell. Biol. 12, 3305–3312 (1992).

    Article  CAS  Google Scholar 

  31. Buday, L., Egan, S. E., Viciana, P. R., Cantrell, D. A. & Downward, J. A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in Ras activation in T cells. J. Biol. Chem. 269, 9019–9023 (1994).

    CAS  Google Scholar 

  32. Salojin, K. V., Zhang, J., Meagher, C. & Delovitch, T. L. ZAP-70 is essential for the T cell antigen receptor-induced plasma membrane targeting of SOS and Vav in T cells. J. Biol. Chem. 275, 5966–5975 (1999).

    Article  Google Scholar 

  33. Holsinger, L. J., Spencer, D. M., Austin, D. J., Schreiber, S. L. & Crabtree, G. R. Signal transduction in T lymphocytes using a conditional allele of Sos. Proc. Natl Acad. Sci. USA 92, 9810–9814 (1995).

    Article  CAS  Google Scholar 

  34. Cheng, A. M. et al. The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc. Natl Acad. Sci. USA 94, 9797–9801 (1997).

    Article  CAS  Google Scholar 

  35. Groves, T. et al. Fyn can partially substitute for Lck in T lymphocyte development . Immunity 5, 417–428 (1996).

    Article  CAS  Google Scholar 

  36. van Oers, N. S., Lowin-Kropf, B., Finlay, D., Connolly, K. & Weiss, A. Alpha beta T cell development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases. Immunity 5, 429–436 (1996).

    Article  CAS  Google Scholar 

  37. Rodewald, H. R., Ogawa, M., Haller, C., Waskow, C. & DiSanto, J. P. Pro-thymocyte expansion by c-kit and the common cytokine receptor γ chain is essential for repertoire formation. Immunity 6, 265–272 (1997).

    Article  CAS  Google Scholar 

  38. Robertson, E. J. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E. J.) 112–117 (Oxford, IRL, 1987).

    Google Scholar 

  39. Bottorff, D., Ebinu, J. & Stone, J. C. RasGRP, a Ras activator: mouse and human cDNA sequences and chromosomal positions. Mamm. Genome 10, 358–361 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank X. H. Xien for help with developing the NX1 cell line, D. Rutkowski for FACs analysis, and P. Blumberg for bryostatin 1. Supported by grants from the Medical Research Council and the National Cancer Institute (Canada) to J. C. S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dower, N., Stang, S., Bottorff, D. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling . Nat Immunol 1, 317–321 (2000). https://doi.org/10.1038/79766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79766

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing