Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BLIMP-1: trigger for differentiation of myeloid lineage

Abstract

B lymphocyte–induced maturation protein-1 (BLIMP-1 or PRDI-BF1) is induced when bone marrow–derived progenitors differentiate in response to macrophage–colony stimulating factor (M-CSF) and is present in peripheral blood monocytes and granulocytes. BLIMP-1 is also induced during differentiation of U937 and HL-60 cells into macrophages or granulocytes. Induction of BLIMP-1 mRNA during macrophage differentiation of U937 and HL-60 shows a biphasic pattern. Overexpression of BLIMP-1 is sufficient to initiate macrophage differentiation of U937 cells whereas blocking endogenous BLIMP-1 inhibits differentiation. One target of BLIMP-1–dependent transcriptional repression in U937 cells is c-myc, providing an explanation for cessation of cell division. Thus BLIMP-1 is a key regulator of terminal differentiation in two separate hematopoietic lineages: myeloid cells and B lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BLIMP-1 mRNA is expressed in human peripheral blood monocytes and granulocytes, and induced during differentiation of primary murine macrophages.
Figure 2: BLIMP-1 expression is induced in U937 and HL-60 cells treated with PMA, and in HL-60 cells treated with DMSO.
Figure 4: T-BLIMP delays or inhibits the expression macrophage-specific surface proteins CD11b and CD11c, and impairs the phagocytotic ability of PMA-treated U937 cells.
Figure 3: U937 stable transfectants expressing T-BLIMP.
Figure 5: BLIMP-1 expression is sufficient to drive macrophage differentiation of U937 cells.
Figure 6: c-myc is a target of BLIMP-1 repression during U937 differentiation.

Similar content being viewed by others

References

  1. Turner, C.A. Jr, Mack, D.H. & Davis, M.M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells . Cell 77, 297–306 (1994).

    Article  CAS  Google Scholar 

  2. Messika, E.J. et al. Differential effect of B lymphocyte-induced maturation protein (Blimp-1) expression on cell fate during B cell development. J. Exp. Med. 188, 515–525 ( 1998).

    Article  CAS  Google Scholar 

  3. Keller, A.D. & Maniatis, T. Identification and characterization of a novel repressor of β- interferon gene expression. Genes Dev. 5, 868–879 ( 1991).

    Article  CAS  Google Scholar 

  4. Ren, B., Chee, K.J., Kim, T.H. & Maniatis, T. PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev. 13, 125–137 ( 1999).

    Article  CAS  Google Scholar 

  5. Yu, J., Angelin-Duclos, C., Greenwood, J., Liao, J. & Calame, K. Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol. Cell Biol. 20, 2592–2603 ( 2000).

    Article  CAS  Google Scholar 

  6. Kakkis, E., Riggs, K.J., Gillespie, W. & Calame, K. A transcriptional repressor of c-myc. Nature 339, 718–721 (1989).

    Article  CAS  Google Scholar 

  7. Lin, Y., Wong, K. & Calame, K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276, 596–599 (1997).

    Article  CAS  Google Scholar 

  8. Angelin-Duclos, C. et al. The Role B-Lymphocyte-Induced Maturation Protein-1 in terminal Differentiation of B Cells and Other Cell Lineage. Cold Spring Harb. Symp. Quant. Biol. 64, 61–70 (1999).

    Article  CAS  Google Scholar 

  9. de Souza, F.S. et al. The zinc finger gene Xblimp1 controls anterior endomesodermal cell fate in Spemann's organizer. EMBO J. 18, 6062–6072 (1999).

    Article  CAS  Google Scholar 

  10. Gidlund, M. et al. Natural killer cells kill tumour cells at a given stage of differentiation. Nature 292, 848– 850 (1981).

    Article  CAS  Google Scholar 

  11. Collins, S.J., Gallo, R.C. & Gallagher, R.E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 270, 347–349 (1977).

    Article  CAS  Google Scholar 

  12. Collins, S.J., Ruscetti, F.W., Gallagher, R.E. & Gallo, R.C. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc. Natl Acad. Sci. USA 75, 2458–2462 ( 1978).

    Article  CAS  Google Scholar 

  13. Collins, S.J. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood 70, 1233–1244 (1987).

    CAS  PubMed  Google Scholar 

  14. Naito, M. Macrophage heterogeneity in development and differentiation. Arch. Histol. Cytol. 56, 331–351 (1993).

    Article  CAS  Google Scholar 

  15. Valledor, A.F., Borras, F.E., Cullell-Young, M. & Celada, A. Transcription factors that regulate monocyte/macrophage differentiation. J. Leukco. Biol. 63, 405–417 (1998).

    Article  CAS  Google Scholar 

  16. Coligan, J.E. Current Protocols in Immunology. (J. Wiley & Sons, New York, 1996).

    Google Scholar 

  17. Warren, M.K. & Vogel, S.N. Bone marrow-derived macrophages: development and regulation of differentiation markers by colony-stimulating factor and interferons. J. Immunol. 134, 982–989 (1985).

    CAS  PubMed  Google Scholar 

  18. Dannaeus, K., Johannisson, A., Nilsson, K. & Jonsson, J.I. Flt3 ligand induces the outgrowth of Mac-1+B220+ mouse bone marrow progenitor cells restricted to macrophage differentiation that coexpress early B cell-associated genes. Exp. Hematol. 27, 1646–1654 (1999).

    Article  CAS  Google Scholar 

  19. Leenen, P.J., de Bruijn, M.F., Voerman, J.S., Campbell, P.A. & van Ewijk, W. Markers of mouse macrophage development detected by monoclonal antibodies. J. Immunol. Methods 174, 5–19 (1994).

    Article  CAS  Google Scholar 

  20. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661– 672 (1997).

    Article  CAS  Google Scholar 

  21. Tudor, K.S., Payne, K.J., Yamashita, Y. & Kincade, P.W. Functional assessment of precursors from murine bone marrow suggests a sequence of early B lineage differentiation events. Immunity 12, 335–345 (2000).

    Article  CAS  Google Scholar 

  22. Kawakami, K. et al. Mac1 discriminates unusual CD4CD8 double-negative T cells bearing αβ antigen receptor from conventional ones with either CD4 or CD8 in murine lung. Immunol. Lett. 46, 143–152 (1995).

    Article  CAS  Google Scholar 

  23. Miller, L.J., Schwarting, R. & Springer, T.A. Regulated expression of the Mac-1, LFA-1, p150,95 glycoprotein family during leukocyte differentiation. J. Immunol. 137, 2891–2900 ( 1986).

    CAS  PubMed  Google Scholar 

  24. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J. & Mathison, J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    Article  CAS  Google Scholar 

  25. Tarella, C., Ferrero, D., Gallo, E., Pagliardi, G.L. & Ruscetti, F.W. Induction of differentiation of HL-60 cells by dimethyl sulfoxide: evidence for a stochastic model not linked to the cell division cycle. Cancer Res. 42, 445– 449 (1982).

    CAS  PubMed  Google Scholar 

  26. Keller, A.D. & Maniatis, T. Only two of the five zinc fingers of the eukaryotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding. Mol. Cell Biol. 12, 1940– 1949 (1992).

    Article  CAS  Google Scholar 

  27. Skerka, C., Zipfel, P.F. & Siebenlist, U. Two regulatory domains are required for downregulation of c-myc transcription in differentiating U937 cells. Oncogene 8, 2135–2143 ( 1993).

    CAS  PubMed  Google Scholar 

  28. Marcu, K., Bossone, S. & Patel, A. Myc Function and Regulation. Ann. Rev. Biochem. 61, 809–860 ( 1992).

    Article  CAS  Google Scholar 

  29. Einat, M., Resnitzky, D. & Kimchi, A. Close link between reduction of c-myc expression by interferon and, G0/G1 arrest. Nature 313, 597–600 (1985).

    Article  CAS  Google Scholar 

  30. Larsson, L.G. et al. Phorbol ester-induced terminal differentiation is inhibited in human U- 937 monoblastic cells expressing a v-myc oncogene. Proc. Natl Acad. Sci. USA 85, 2638– 2642 (1988).

    Article  CAS  Google Scholar 

  31. Siebenlist, U., Bressler, P. & Kelly, K. Two distinct mechanisms of transcriptional control operate on c-myc during differentiation of HL60 cells. Mol. Cell Biol. 8, 867–874 ( 1988).

    Article  CAS  Google Scholar 

  32. Garcia, A. et al. Differential effect on U937 cell differentiation by targeting transcriptional factors implicated in tissue- or stage-specific induced integrin expression. Exp. Hematol. 27, 353– 364 (1999).

    Article  CAS  Google Scholar 

  33. Momiyama, N., Shimada, H. & Mitsuhashi, M. Suppression of c-jun by antisense oligonucleotides inhibits cell adhesion but not respiratory burst during phorbol ester-induced differentiation of U937 human monoblastic cells. Cell Growth Differ. 7, 1005–1012 (1996).

    CAS  PubMed  Google Scholar 

  34. Manzella, L. et al. Role of interferon regulatory factor 1 in monocyte/macrophage differentiation. Eur. J. Immunol. 29, 3009 –3016 (1999).

    Article  CAS  Google Scholar 

  35. Olson, M.C. et al. PU. 1 is not essential for early myeloid gene expression but is required for terminal myeloid differentiation. Immunity 3, 703–714 (1995).

    Article  CAS  Google Scholar 

  36. Tanaka, T. et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80, 353–361 ( 1995).

    Article  CAS  Google Scholar 

  37. Scheller, M. et al. Altered development and cytokine responses of myeloid progenitors in the absence of transcription factor, interferon consensus sequence binding protein. Blood 94, 3764– 3771 (1999).

    CAS  PubMed  Google Scholar 

  38. Gabriele, L. et al. Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein J. Exp. Med. 190, 411–421 (1999). (Erratum in J. Exp. Med. 6, 190 ( 1999).)

    Article  CAS  Google Scholar 

  39. Anderson, M.T. et al. Simultaneous fluorescence-activated cell sorter analysis of two distinct transcriptional elements within a single cell using engineered green fluorescent proteins. Proc. Natl Acad. Sci. USA 93, 8508–8511 (1996).

    Article  CAS  Google Scholar 

  40. Morgenstern, J.P. & Land, H. A series of mammalian expression vectors and characterisation of their expression of a reporter gene in stably and transiently transfected cells. Nucleic Acids Res. 18, 1068 (1990).

    Article  CAS  Google Scholar 

  41. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  Google Scholar 

  42. Burns, J.C., Friedmann, T., Driever, W., Burrascano, M. & Yee, J.K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl Acad. Sci. USA 90, 8033–8037 (1993).

    Article  CAS  Google Scholar 

  43. Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J. & Rutter, W.J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294– 5299 (1979).

    Article  CAS  Google Scholar 

  44. Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular Cloning: A laboratory manual Vol. 10 545 (Cold Spring Harbor Laboratory, Cold Spring Harbor NY, 1982).

    Google Scholar 

  45. Anderson, K.L., Smith, K.A., Pio, F., Torbett, B.E. & Maki, R.A. Neutrophils deficient in PU.1 do not terminally differentiate or become functionally competent. Blood 92, 1576–1585 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Dalla-Favera, S. Greenberg, C. Schindler, S. Silverstein and K.-I. Lin for reading the manuscript and for discussions, D.J. Husemann and J. Rooney for discussions and technical advice, G. Cattoretti for technical support. We are grateful to members of the Calame laboratory especially J. Liao for technical assistance and J. Yu for providing the T-BLIMP construct. Supported by National Institutes of Health Cancer Biology Training grant 2 T32 CA09503-14 (to D.H.C) and RO1-AI43576 (to K.C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Calame.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, D., Angelin-Duclos, C. & Calame, K. BLIMP-1: trigger for differentiation of myeloid lineage. Nat Immunol 1, 169–176 (2000). https://doi.org/10.1038/77861

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing