Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells

Abstract

The activation of dendritic cells (DC) to produce interleukin 12 (IL-12) is thought to be a key step in the initiation of cell-mediated immunity to intracellular pathogens. Here we show that ligation of the C–C chemokine receptor (CCR) 5 can provide a major signal for the induction of IL-12 synthesis by the CD8α+ subset of DC and that this pathway is important in establishing interferon γ-dependent resistance to the protozoan parasite Toxoplasma gondii. These findings support the concept that the early induction of chemokines by invading pathogens is a critical step not only for the recruitment of DC but also for the determination of their subsequent immunologic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective STAg-induced splenic DC clustering and IL-12 production in mice pre-treated with Met-RANTES or genetically deficient in CCR5.
Figure 2: STAg induction of CCR5 ligand expression in vivo and in vitro.
Figure 3: Dependence on CCR5 of in vivo IL-12 production by CD8α+ DC.
Figure 4: Partial role of CCR5 in STAg-induced IL-12 production by DC in vitro.
Figure 5: CCR5 ligands induce IL-12 production by splenic CD8α+ DC in vitro.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  PubMed  Google Scholar 

  2. Reis e Sousa, C., Sher, A. & Kaye, P. The role of dendritic cells in the induction and regulation of immunity to microbial infection. Curr. Opin. Immunol. 11, 392–399 (1999).

    CAS  PubMed  Google Scholar 

  3. Trinchieri, G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv. Immunol. 70, 83–243 (1998).

    CAS  PubMed  Google Scholar 

  4. Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997).

    CAS  PubMed  Google Scholar 

  5. Reis e Sousa, C. et al. Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology. Immunity 11, 637–647 (1999).

    CAS  PubMed  Google Scholar 

  6. Denkers, E.Y. & Gazzinelli, R.T. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin. Microbiol. Rev. 11, 569–588 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yap, G.S. & Sher, A. Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function. Immunobiology 201, 240–247 (1999).

    CAS  PubMed  Google Scholar 

  8. Sher, A. & Reis e Sousa, C. Ignition of the type 1 response to intracellular infection by dendritic cell-derived interleukin-12. Eur. Cytokine Network 9, 65–68 (1998).

    CAS  Google Scholar 

  9. Granelli-Piperno, A. et al. Efficient interaction of HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J. Exp. Med. 184, 2433–2438 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sozzani, S. et al. Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J. Immunol. 159, 1993–2000 (1997).

    CAS  PubMed  Google Scholar 

  11. Proudfoot, A.E. et al. Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J. Biol. Chem. 271, 2599–2603 (1996).

    CAS  PubMed  Google Scholar 

  12. Alfano, M., Schmidtmayerova, H., Amella, C.A., Pushkarsky, T. & Bukrinsky, M. The B-oligomer of pertussis toxin deactivates CC chemokine receptor 5 and blocks entry of M-tropic HIV-1 strains. J. Exp. Med. 190, 597–605 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Scharton-Kersten, T.M., Yap, G., Magram, J. & Sher, A. Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J. Exp. Med. 185, 1261–1273 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fahey, T.J.D. et al. Macrophage inflammatory protein 1 modulates macrophage function. J. Immunol. 148, 2764–2769 (1992).

    CAS  PubMed  Google Scholar 

  15. Lukacs, N.W. et al. C-C chemokines differentially alter interleukin-4 production from lymphocytes. Am. J. Pathol. 150, 1861–1868 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Alkhatib, G. et al. CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958 (1996).

    CAS  PubMed  Google Scholar 

  17. Berger, E.A., Murphy, P.M. & Farber, J.M. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657–700 (1999).

    CAS  PubMed  Google Scholar 

  18. Meyer, L. et al. CCR5 delta32 deletion and reduced risk of toxoplasmosis in persons infected with human immunodeficiency virus type 1. The SEROCO-HEMOCO- SEROGEST Study Groups. J. Infect. Dis. 180, 920–924 (1999).

    CAS  PubMed  Google Scholar 

  19. Huffnagle, G.B. et al. Cutting edge: Role of C-C chemokine receptor 5 in organ-specific and innate immunity to Cryptococcus neoformans. J. Immunol. 163, 4642–4646 (1999).

    CAS  PubMed  Google Scholar 

  20. Zhou, Y. et al. Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J. Immunol. 160, 4018–4025 (1998).

    CAS  PubMed  Google Scholar 

  21. Sato, N. et al. Defects in the generation of IFN-γ are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J. Immunol. 163, 5519–5525 (1999).

    CAS  PubMed  Google Scholar 

  22. Braun, M.C., Lahey, E. & Kelsall, B.L. Selective suppression of IL-12 production by chemoattractants. J. Immunol. 164, 3009–3017 (2000).

    CAS  PubMed  Google Scholar 

  23. He, J., Gurimathan, S., Ash-Shaheed, B. & Kelsall, B. Primary role for Gi protein signaling in the regulation of interleukin 12 production and the induction of T helper cell type 1 responses. J. Exp. Med. 191, 1605–1610 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Grunvald, E. et al. Biochemical characterization and protein kinase C dependency of monokine-inducing activities of Toxoplasma gondii. Infect. Immun. 64, 2010–2018 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Scharton-Kersten, T. M. et al. In the absence of endogenous IFN-γ, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection. J. Immunol. 157, 4045–4054 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Swofford for performing FACS purification of DC as well as R. Germain, D. Sacks and J. Farber for their comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Aliberti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliberti, J., Reis e Sousa, C., Schito, M. et al. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nat Immunol 1, 83–87 (2000). https://doi.org/10.1038/76957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76957

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing