Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interferon α/β-mediated inhibition and promotion of interferon γ: STAT1 resolves a paradox

Abstract

Induction of high systemic levels of type 1 interferons (IFNs) IFN-α and IFN-β is a hallmark of many viral infections. In addition to their potent antiviral effects, these cytokines mediate a number of immunoregulatory functions and can promote IFN-γ expression in T cells. However, during viral infections of mice IFN-γ production is not always observed at the same time as systemic IFN-α/β production and when, elicited at these times, is IFN-α/β–independent. We demonstrate that type 1 interferons not only fail to induce, but also act to inhibit, IFN-γ expression by both NK and T cells. The mechanism of inhibition is dependent upon the IFN-α/β receptor and the signal transducer and activator of transcription 1 (STAT1). In the absence of STAT1, not only are the IFN-α/β–mediated inhibitory effects completely abrogated, but the cytokines themselves can induce IFN-γ expression. These results indicate that endogenous biochemical pathways are in place to negatively regulate NK and T cell IFN-γ expression elicited by IFN-α/β or other stimuli, at times of innate responses to viral infections. They also show that type 1 interferon signaling can occur through STAT1-dependent and independent mechanisms and suggest that efficient induction of IFN-γ expression by IFN-α/β requires STAT1 regulation. Such immunoregulatory pathways may be critical for shaping the endogenous innate and virus-specific adaptive immune responses to viral infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infection-induced leukocyte refractoriness to IL-12 stimulation of IFN-γ.
Figure 2: IL-12Rβ1 and IL-12Rβ2 expression on NK cells in uninfected or virus-infected mice.
Figure 3: IFN-α/β-mediated induction of leukocyte refractoriness to IL-12 stimulation of IFN-γ.
Figure 4: IFN-α/β–mediated induction of leukocyte refractoriness to anti-CD3 stimulation of IFN-γ.
Figure 5: STAT1-mediated leukocyte refractoriness to IL-12 or anti-CD3 stimulation for IFN-γ production in vitro.
Figure 6: IFN-α/βR- and STAT1-mediated regulation of IFN-γ responses during viral infections.
Figure 7: Type 1 IFN stimulation of IFN-γ production in the absence of STAT1.

Similar content being viewed by others

References

  1. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Pfeffer, L. M. et al. 1998. Biological properties of recombinant α-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 58, 2489–2499 (1998).

    CAS  PubMed  Google Scholar 

  3. Biron, C. A. Role of early cytokines, including α and β interferons (IFN-α/β), in innate and adaptive immune responses to viral infections. Semin. Immunol. 5, 383–390 (1998).

    Article  Google Scholar 

  4. Biron, C. A. Initial and innate responses to viral infections – pattern setting in immunity or disease. Curr. Opin. Microbiol. 2, 374–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Klimstra, W. B. et al. Infection of neonatal mice with sindbis virus results in a systemic inflammatory response syndrome. J. Virol. 73, 10387–10398 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orange, J. S. & Biron, C. A. Characterization of early IL-12, IFN-α/β, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J. Immunol. 156, 4746–4756 (1996).

    CAS  PubMed  Google Scholar 

  7. Tough, D. F., Borrow, P. & J. Sprent . Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272, 1947–1950 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Marrack, P., Kappler, J. & T. Mitchell . Type I interferons keep activated T cells alive. J. Exp. Med. 189, 521–530 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Orange, J. S., Wang, B., Terhorst, C. & Biron, C. A. Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J. Exp. Med. 182, 1045–1056 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Orange, J. S. & Biron, C. A. An absolute and restricted requirement for IL-12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J. Immunol. 156, 1138–1142 (1996).

    CAS  PubMed  Google Scholar 

  11. Ruzek, M. C., Miller, A. H., Opal, S. M., Pearce, B. D. & Biron, C. A. Characterization of early cytokine responses and an interleukin (IL)-6-dependent pathway of endogenous glucocorticoid induction during murine cytomegalovirus infection. J. Exp. Med. 185, 1185–1192 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pien, G. C. & Biron, C. A. Compartmental differences in NK cell responsiveness to IL-12 during lymphocytic choriomeningitis virus (LCMV) infection. J. Immunol. 164, 994–1001 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Cousens, L.P., Orange, J. S., Su, H. C. & Biron, C.A. Interferon-α/β inhibition of interleukin 12 and interferon-γ production in vitro and endogenously during viral infection. Proc. Natl Acad. Sci. USA 94, 634–639 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rogge, L. et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185, 825–831 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rogge, L. et al. The role of Stat4 in species-specific regulation of Th cell development by type I IFNs. J. Immunol. 161, 6567–6574 (1998).

    CAS  PubMed  Google Scholar 

  16. Durbin, J. E., Hackenmiller, R., Simon, M. C. & Levy, D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Meraz, M. A. et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Ramana, C. V. et al. Regulation of c-myc expression by IFN-gamma through Stat1-dependent and -independent pathways. EMBO J. 19, 263–272 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, Y., Wu, T. R., Cai, S., Welte, T. & Y. E. Chin . Stat1 as a component of TNFα receptor 1-TRADD signaling complex to inhibit NF-κB activation. Mol. Cell Biol. 20, 4505–4512 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, X., Sun, Y. L. & Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273, 794–797 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Haque, S. J., Flati, V., Deb, A. & Williams, B. R. Roles of protein-tyrosine phosphatases in Stat1 α-mediated cell signaling. J. Biol. Chem. 270, 25709–25714 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, C. K., Bluyssen, H. A. & Levy, D. E. Regulation of interferon-alpha responsiveness by the duration of Janus kinase activity. J. Biol. Chem. 72, 21872–21877 (1997).

    Article  Google Scholar 

  23. You, M., Yu, D. H. & Feng, G. S. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol. Cell Biol. 19, 2416–2424 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakamoto, H. et al. A Janus kinase inhibitor, JAB, is an interferon-gamma-inducible gene and confers resistance to interferons. Blood 92, 1668–1676 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Song, M. M. & Shuai, K. The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 273, 35056–35062 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Marine, J. C. et al. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98, 609–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Alexander, W. S. et al. SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98, 597–608 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Haspel, R. L. & Darnell, J. E. Jr. A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc. Natl Acad. Sci. USA 96, 10188–10193 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Teague, T. K. et al. Activation-induced Inhibition of Interleukin 6-mediated T cell survival and signal transducer and activator of transcription 1 signaling. J. Exp. Med. 191, 915–926 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cousens, L. P. et al. Two roads diverged: interferon α/β- and interleukin 12-mediated pathways in promoting T cell interferon γ responses during viral infection. J. Exp. Med. 189, 1315–1328 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen, K. B. & Biron, C. A. Synergism for cytokine-mediated disease during concurrent endotoxin and viral challenges: roles for NK and T cell IFN-gamma production. J. Immunol. 162, 5238–5246 (1999).

    CAS  PubMed  Google Scholar 

  32. Orange, J. S. et al. Mechanism of interleukin 12-mediated toxicities during experimental viral infections: role of tumor necrosis factor and glucocorticoids. J. Exp. Med. 181, 901–914 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Yoshida, R., Murray, H. W. & C. F. Nathan . Agonist and antagonist effects of interferon α and β on activation of human macrophages. Two classes of interferon γ receptors and blockade of the high-affinity sites by interferon alpha or beta. J. Exp. Med. 167, 1171–1185 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Politis, A. D., Sivo, J., Driggers, P. H., Ozato, K. & S. N. Vogel. Modulation of interferon consensus sequence binding protein mRNA in murine peritoneal macrophages. Induction by IFN-γ and down-regulation by IFN-α, dexamethasone, and protein kinase inhibitors. J. Immunol. 148, 801–807 (1992).

    CAS  PubMed  Google Scholar 

  35. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, Y. & C. A. Janeway, Jr. Interferon gamma plays a critical role in induced cell death of effector T cell: a possible third mechanism of self-tolerance. J. Exp. Med. 172, 1735–1739 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Brunda, M. J. & Rosenbaum, D. Modulation of murine natural killer cell activity in vitro and in vivo by recombinant human interferons. Cancer Res. 44, 597–601 (1984).

    CAS  PubMed  Google Scholar 

  39. Wu, C. Y., Wang, K., McDyer, J. F. & R. A. Seder . Prostaglandin E2 and dexamethasone inhibit IL-12 receptor expression and IL-12 responsiveness. J. Immunol. 161, 2723–2730 (1998).

    CAS  PubMed  Google Scholar 

  40. Nishikomori, R., Ehrhardt, R. O. & W. Strober. T helper type 2 cell differentiation occurs in the presence of interleukin 12 receptor β2 chain expression and signaling. J. Exp. Med. 191, 847–858 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Stacey Carlton, Marc Dalod, Ryuta Nishikomori, Philipp Osterloh, Melanie Ruzek, and Thais Salazar-Mather for their help with experiments and/or stimulating discussions; Eugene Chin for careful reading of the manuscript; and Michael Brunda, Ion Gresser, Phil Scott, Robert Seder, Warren Strober, and Giorgio Trinchieri, for valuable gifts of reagents. This work was supported by grants R01-CA41268 and T32-ES07272 from the National Institutes of Health, and by a pre-doctoral fellowship from HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine A. Biron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, K., Cousens, L., Doughty, L. et al. Interferon α/β-mediated inhibition and promotion of interferon γ: STAT1 resolves a paradox. Nat Immunol 1, 70–76 (2000). https://doi.org/10.1038/76940

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing