Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies

Abstract

Although the idiotypic structures of immunoglobulin from malignant B cells were the first tumor-specific determinants recognized, and clinical vaccination trials have demonstrated induction of tumor-specific immunity, the function of immunoglobulin-specific CD8+ cytotoxic T lymphocytes in tumor rejection remains elusive. Here, we combined bioinformatics and a T cell-expansion system to identify human immunoglobulin-derived peptides capable of inducing cytotoxic T-lymphocyte responses. Immunogenic peptides were derived from framework regions of the variable regions of the immunoglobulin that were shared among patients. Human-leukocyte-antigen-matched and autologous cytotoxic T lymphocytes specific for these peptides killed primary malignant B cells, demonstrating that malignant B cells are capable of processing and presenting such peptides. Targeting shared peptides to induce T-cell responses might further improve current vaccination strategies in B-cell malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patients, sequences obtained from clonal malignant B cells of those patients, and the peptides derived from the patients' immunoglobulins predicted to bind to HLA-A2 with a half-life of more than 1 min.
Figure 2: Generation of cytotoxic T cells against immunoglobulin-derived peptides that bind to HLA-A2.
Figure 3: Recognition of malignant B cells by HLA-matched and autologous CTLs raised against immunoglobulin-derived peptides.
Figure 4: Enhanced recognition of malignant B cells by peptide pulsing or CD40 activation of the malignant B cells.
Figure 5: CTLs raised against heteroclitic peptides of framework region derived peptides recognized the native peptide pulsed onto HLA-A2-positive antigen-presenting cells and tumor cells.

Similar content being viewed by others

References

  1. Janeway, C.A. Jr., Sakato, N. & Eisen, H.N. Recognition of immunoglobulin idiotypes by thymus-derived lymphocytes. Proc. Natl. Acad. Sci. USA 72, 2357–2360 (1975).

    Article  Google Scholar 

  2. Bogen, B., Malissen, B. & Haas, W. Idiotope-specific T cell clones that recognize syngeneic immunoglobulin fragments in the context of class II molecules. Eur. J. Immunol. 16, 1373–1378 (1986).

    Article  CAS  Google Scholar 

  3. Campbell, M.J. et al. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular responses elicited by tumor-derived immunoglobulin M and its molecular subunits. J. Immunol. 139, 2825 –2833 (1987).

    CAS  PubMed  Google Scholar 

  4. George, A.J., Tutt, A.L. & Stevenson, F.K. Anti-idiotypic mechanisms involved in suppression of a mouse B cell lymphoma, BCL1. J. Immunol. 138, 628–634 (1987).

    CAS  PubMed  Google Scholar 

  5. Lauritzsen, G.F., Weiss, S. & Bogen, B. Anti-tumour activity of idiotype-specific, MHC-restricted Th1 and Th2 clones in vitro and in vivo. Scand. J. Immunol. 37, 77–85 (1993).

    Article  CAS  Google Scholar 

  6. Syrengelas, A.D., Chen, T.T. & Levy, R. DNA immunization induces protective immunity against B-cell lymphoma. Nature Med. 2, 1038– 1041 (1996).

    Article  CAS  Google Scholar 

  7. King, C.A. et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nature Med. 4, 1281–1286 (1998).

    Article  CAS  Google Scholar 

  8. Weiss, S. & Bogen, B. B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells. Proc. Natl. Acad. Sci. USA 86, 282–286 (1989).

    Article  CAS  Google Scholar 

  9. Weiss, S. & Bogen, B. MHC class II-restricted presentation of intracellular antigen. Cell 64, 767– 776 (1991).

    Article  CAS  Google Scholar 

  10. Lauritzsen, G.F., Weiss, S., Dembic, Z. & Bogen, B. Naive idiotype-specific CD4+ T cells and immunosurveillance of B-cell tumors. Proc. Natl. Acad. Sci. USA 91, 5700–5704 (1994).

    Article  CAS  Google Scholar 

  11. Munthe, L.A., Kyte, J.A. & Bogen, B. Resting small B cells present endogenous immunoglobulin variable-region determinants to idiotope-specific CD4(+) T cells in vivo. Eur. J. Immunol. 29, 4043– 4052 (1999).

    Article  CAS  Google Scholar 

  12. Kwak, L.W. et al. Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N. Engl. J. Med. 327, 1209–1215 (1992).

    Article  CAS  Google Scholar 

  13. Hsu, F.J. et al. Tumor-specific idiotype vaccines in the treatment of patients with B- cell lymphoma—long-term results of a clinical trial. Blood 89, 3129–3135 ( 1997).

    CAS  Google Scholar 

  14. Wen, Y.J., Ling, M. & Lim, S.H. Immunogenicity and cross-reactivity with idiotypic IgA of VH CDR3 peptide in multiple myeloma. Br. J. Haematol. 100, 464–468 (1998).

    Article  CAS  Google Scholar 

  15. Wen, Y.J., Ling, M., Bailey-Wood, R. & Lim, S.H. Idiotypic protein-pulsed adherent peripheral blood mononuclear cell- derived dendritic cells prime immune system in multiple myeloma. Clin. Cancer Res. 4, 957–962 ( 1998).

    CAS  PubMed  Google Scholar 

  16. Wen, Y.J. & Lim, S.H. T cells recognize the VH complementarity-determining region 3 of the idiotypic protein of B cell non-Hodgkin's lymphoma. Eur. J. Immunol. 27, 1043–1047 (1997).

    Article  CAS  Google Scholar 

  17. Fagerberg, J. et al. T-cell-epitope mapping of the idiotypic monoclonal IgG heavy and light chains in multiple myeloma. Int. J. Cancer 80, 671–680 (1999).

    Article  CAS  Google Scholar 

  18. Bendandi, M. et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against lymphoma . Nature Med. 5, 1171–1177 (1999).

    Article  CAS  Google Scholar 

  19. Osterroth, F., Garbe, A., Fisch, P. & Veelken, H. Stimulation of cytotoxic T cells against idiotype immunoglobulin of malignant lymphoma with protein-pulsed or idiotype-transduced dendritic cells. Blood 95, 1342–1349 (2000).

  20. Fuchs, E.J. & Matzinger, P. B cells turn off virgin but not memory T cells. Science 258, 1156– 1159 (1992).

    Article  CAS  Google Scholar 

  21. Bennett, S.R., Carbone, F.R., Toy, T., Miller, J.F. & Heath, W.R. B cells directly tolerize CD8(+) T cells. J. Exp. Med. 188, 1977–1983 (1998).

    Article  CAS  Google Scholar 

  22. Rammensee, H., Bachmann, J., Emmerich, N.P., Bachor, O.A. & Stevanovic, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213 –219 (1999).

    Article  CAS  Google Scholar 

  23. Cao, W., Myers-Powell, B.A. & Braciale, T.J. Recognition of an immunoglobulin VH epitope by influenza virus-specific class I major histocompatibility complex-restricted cytolytic T lymphocytes. J. Exp. Med. 179, 195– 202 (1994).

    Article  CAS  Google Scholar 

  24. Sette, A. et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol. 153, 5586–5592 (1994).

    CAS  PubMed  Google Scholar 

  25. van der Burg, S.H., Visseren, M.J., Brandt, R.M., Kast, W.M. & Melief, C.J. Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J. Immunol. 156, 3308–3314 (1996).

    CAS  PubMed  Google Scholar 

  26. Savage, P.A., Boniface, J.J. & Davis, M.M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).

    Article  CAS  Google Scholar 

  27. Parker, K.C., Bednarek, M.A. & Coligan, J.E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163–175 (1994).

    CAS  PubMed  Google Scholar 

  28. Gulukota, K., Sidney, J., Sette, A. & DeLisi, C. Two complementary methods for predicting peptides binding major histocompatibility complex molecules . J. Mol. Biol. 267, 1258– 1267 (1997).

    Article  CAS  Google Scholar 

  29. Molldrem, J. et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 88, 2450– 2457 (1996).

    CAS  PubMed  Google Scholar 

  30. Nijman, H.W. et al. Identification of peptide sequences that potentially trigger HLA-A2.1- restricted cytotoxic T lymphocytes. Eur. J. Immunol. 23, 1215–1219 ( 1993).

    Article  CAS  Google Scholar 

  31. Brossart, P. et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 93, 4309–4317 ( 1999).

    CAS  Google Scholar 

  32. Vonderheide, R.H., Hahn, W.C., Schultze, J.L. & Nadler, L.M. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10, 673–679 (1999).

    Article  CAS  Google Scholar 

  33. Parker, K.C., Shields, M., DiBrino, M., Brooks, A. & Coligan, J.E. Peptide binding to MHC class I molecules: implications for antigenic peptide prediction. Immunol. Res. 14, 34–57 (1995).

    Article  CAS  Google Scholar 

  34. Schultze, J.L., et al. CD40 activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J. Clin. Invest. 100, 2757–2765 (1997).

    Article  CAS  Google Scholar 

  35. Cox, A.L. et al. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264, 716–719 (1994).

    Article  CAS  Google Scholar 

  36. Wang, R.F., Appella, E., Kawakami, Y., Kang, X. & Rosenberg, S.A. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J. Exp. Med. 184, 2207–2216 ( 1996).

    Article  CAS  Google Scholar 

  37. Blake, N. et al. Human CD8+ T cell responses to EBV EBNA1: HLA class I presentation of the (Gly-Ala)-containing protein requires exogenous processing. Immunity 7, 791–802 ( 1997).

    Article  CAS  Google Scholar 

  38. Schirmbeck, R., Wild, J. & Reimann, J. Similar as well as distinct MHC class I-binding peptides are generated by exogenous and endogenous processing of hepatitis B virus surface antigen. Eur. J. Immunol. 28, 4149 –4161 (1998).

    Article  CAS  Google Scholar 

  39. Kessler, B.M., Bassanini, P., Cerottini, J.C. & Luescher, I.F. Effects of epitope modification on T cell receptor-ligand binding and antigen recognition by seven H-2Kd-restricted cytotoxic T lymphocyte clones specific for a photoreactive peptide derivative. J. Exp. Med. 185, 629–640 (1997).

    Article  CAS  Google Scholar 

  40. Pardoll, D.M., Inducing autoimmune disease to treat cancer. Proc. Natl. Acad. Sci. USA 96, 5340–5342 ( 1999).

    Article  CAS  Google Scholar 

  41. Nestle, F.O., et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med. 4, 328– 332 (1998).

    Article  CAS  Google Scholar 

  42. Rosenberg, S.A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med. 4, 321–327 ( 1998).

    Article  CAS  Google Scholar 

  43. Manici, S. et al. Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. J. Exp. Med. 189, 871–876 (1999).

    Article  CAS  Google Scholar 

  44. Provan, D. et al. Eradication of polymerase chain reaction-detectable chronic lymphocytic leukemia cells is associated with improved outcome after bone marrow transplantation. Blood 88, 2228– 2235 (1996).

    CAS  PubMed  Google Scholar 

  45. Hawkins, R.E. et al. Idiotypic vaccination against human B-cell lymphoma. Rescue of variable region gene sequences from biopsy material for assembly as single-chain Fv personal vaccines. Blood 83, 3279– 3288 (1994).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank L.M. Nadler, C. Janeway Jr., K.W. Wucherpfennig and K.S. Anderson for reading the manuscript. We thank G. Dranoff for discussions and D. Neuberg for statistical assistance. Technical assistance for immunoglobulin sequencing was provided by T. Poor and D. Bowers, and for T-cell cultures, by M. Bedor and D. Schnipper. This work was supported by grants PO1 CA 66996, CA78378 and CA81534 from the National Institutes of Health. J.L.S. is a Special Fellow of the Leukemia and Lymphoma Society of America. M.W. is supported by a grant from the Deutsche Krebshilfe und Dr. Mildred Scheel Stiftung. R.H.V. is supported by a grant from the Doris Duke Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Gribben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trojan, A., Schultze, J., Witzens, M. et al. Immunoglobulin framework-derived peptides function as cytotoxic T-cell epitopes commonly expressed in B-cell malignancies. Nat Med 6, 667–672 (2000). https://doi.org/10.1038/76243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing