Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death

Abstract

The gene FUS (also known as TLS (for translocated in liposarcoma) and hnRNP P2) is translocated with the gene encoding the transcription factor ERG-1 in human myeloid leukaemias1,2,3. Although the functions of wild-type FUS are unknown, the protein contains an RNA-recognition motif and is a component of nuclear riboprotein complexes4,5. FUS resembles a transcription factor in that it binds DNA, contributes a transcriptional activation domain to the FUS–ERG oncoprotein and interacts with several transcription factors in vitro6,7,8. To better understand FUS function in vivo, we examined the consequences of disrupting Fus in mice. Our results indicate that Fus is essential for viability of neonatal animals, influences lymphocyte development in a non-cell-intrinsic manner, has an intrinsic role in the proliferative responses of B cells to specific mitogenic stimuli and is required for the maintenance of genomic stability. The involvement of a nuclear riboprotein in these processes in vivo indicates that Fus is important in genome maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of Fus by gene entrapment.
Figure 2: Analysis of peripheral blood and lymphoid organ cellularity.
Figure 3: Defective B-cell development in Fus−/− mice.
Figure 4: Functional analysis of Fus-deficient B cells.
Figure 5: High incidence of genomic instability in Fus−/− cells.

Similar content being viewed by others

References

  1. Pereira, D.S. et al. Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Proc. Natl Acad. Sci. USA 95, 8239–8244 ( 1998).

    Article  CAS  Google Scholar 

  2. Ichikawa, H., Shimizu, K., Hayashi, Y. & Ohki, M. An RNA-binding protein gene, TLS /FUS, is fused to ERG in human myeloid leukemia with t(16;21) chromosomal translocation. Cancer Res. 54, 2865–2868 (1994).

    CAS  PubMed  Google Scholar 

  3. Hiyoshi, M., Oh, K.R., Yamane, T. & Tatsumi, N. Acute non-lymphoblastic leukaemia with t(16;21): case report with a review of the literature. Clin. Lab Haematol. 17, 243–246 (1995).

    CAS  PubMed  Google Scholar 

  4. Zinszner, H., Albalat, R. & Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev. 8, 2513–2526 ( 1994).

    Article  CAS  Google Scholar 

  5. Calvio, C., Neubauer, G., Mann, M. & Lamond, A.I. Identification of hnRNP P2 as TLS/FUS using electrospray mass spectrometry. RNA 1, 724–733 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Prasad, D.D., Ouchida, M., Lee, L., Rao, V.N. & Reddy, E.S. TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16;21) chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain. Oncogene 9, 3717–3729 (1994).

    CAS  Google Scholar 

  7. Powers, C.A., Mathur, M., Raaka, B.M., Ron, D. & Samuels, H.H. TLS (translocated-in-liposarcoma) is a high-affinity interactor for steroid, thyroid hormone, and retinoid receptors. Mol. Endocrinol. 12, 4–18 (1998 ).

    Article  CAS  Google Scholar 

  8. Hallier, M., Lerga, A., Barnache, S., Tavitian, A. & Moreau-Gachelin, F. The transcription factor Spi-1/PU.1 interacts with the potential splicing factor TLS. J. Biol. Chem. 273, 4838–4842 (1998).

    Article  CAS  Google Scholar 

  9. Hicks, G.G. et al. Functional genomics in mice by tagged sequence mutagenesis . Nature Genet. 16, 338– 344 (1997).

    Article  CAS  Google Scholar 

  10. Aman, P. et al. Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS. Genomics 37, 1–8 (1996).

    Article  CAS  Google Scholar 

  11. Carsetti, R., Kohler, G. & Lamers, M.C. Transitional B cells are the target of negative selection in the B cell compartment. J. Exp. Med. 181, 2129–2140 (1995).

    Article  CAS  Google Scholar 

  12. Horwitz, B.H., Scott, M.L., Cherry, S.R., Bronson, R.T. & Baltimore, D. Failure of lymphopoiesis after adoptive transfer of NF- κB-deficient fetal liver cells. Immunity 6, 765–772 (1997).

    Article  CAS  Google Scholar 

  13. Hardin, J.D. et al. Bone marrow B lymphocyte development in c-abl-deficient mice . Cell. Immunol. 165, 44– 54 (1995).

    Article  CAS  Google Scholar 

  14. Schwartzberg, P.L. et al. Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell 65, 1165–1175 (1991).

    Article  CAS  Google Scholar 

  15. Perrotti, D. et al. TLS/FUS, a pro-oncogene involved in multiple chromosomal translocations, is a novel regulator of BCR/ABL-mediated leukemogenesis. EMBO J. 17, 4442–4455 ( 1998).

    Article  CAS  Google Scholar 

  16. Shafman, T. et al. Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387, 520– 523 (1997).

    Article  CAS  Google Scholar 

  17. Baskaran, R. et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387 , 516–519 (1997).

    Article  CAS  Google Scholar 

  18. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 ( 1996).

    Article  CAS  Google Scholar 

  19. Xu, Y. et al. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev. 10, 2411–2422 (1996).

    Article  CAS  Google Scholar 

  20. Xu, Y. & Baltimore, D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10, 2401–2410 (1996).

    Article  CAS  Google Scholar 

  21. Bertrand, P., Akhmedov, A.T., Delacote, F., Durrbach, A. & Lopez, B.S. Human POMp75 is identified as the pro-oncoprotein TLS/FUS: both POMp75 and POMp100 DNA homologous pairing activities are associated to cell proliferation. Oncogene 18, 4515–4521 (1999).

    Article  CAS  Google Scholar 

  22. Derr, L.K., Strathern, J.N. & Garfinkel, D.J. RNA-mediated recombination in S. cerevisiae. Cell 67, 355–364 ( 1991).

    Article  CAS  Google Scholar 

  23. Maldonado, E. et al. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381, 86– 89 (1996).

    Article  CAS  Google Scholar 

  24. Moore, J.K. & Haber, J.E. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383, 644–646 (1996).

    Article  Google Scholar 

  25. Teng, S.C., Kim, B. & Gabriel, A. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383, 641– 644 (1996).

    Article  Google Scholar 

  26. Schreiber, E., Matthias, P., Muller, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with mini-extracts, prepared from a small number of cells. Nucleic Acids Res. 17, 6419–6420 (1989).

    Article  CAS  Google Scholar 

  27. Zinszner, H., Immanuel, D., Yin, Y., Liang, F.X. & Ron, D. A topogenic role for the oncogenic N-terminus of TLS: nucleolar localization when transcription is inhibited. Oncogene 14, 451–461 ( 1997).

    Article  CAS  Google Scholar 

  28. Singh, N. et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J. Immunol. 163, 2373–2377 (1999).

    CAS  PubMed  Google Scholar 

  29. Fukasawa, K., Wiener, F., Vande-Woude, G.F. & Mai, S. Genomic instability and apoptosis are frequent in p53 deficient young mice . Oncogene 15, 1295–1302 (1997).

    Article  CAS  Google Scholar 

  30. Gaubatz, J.W. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat. Res. 237, 271– 292 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Collins for histology expertise; D. Houston for haematology expertise; D. McFarland for help with flow-cytometric analyses; K. Cann for assistance preparing the manuscript; and D. Ron for providing Fus antibody reagents and exchanging data before publication. This work was supported by Public Health Service Grants (R01HG00684 and R01RR13166 to H.E.R.), a grant from the Kleberg Foundation and Cancer Center (Core; P30CA42014) and a grant from Cancer Care Manitoba (CL2737 to G.G.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey G. Hicks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicks, G., Singh, N., Nashabi, A. et al. Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death . Nat Genet 24, 175–179 (2000). https://doi.org/10.1038/72842

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing