Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mouse model for spinal muscular atrophy

Abstract

The survival motor neuron gene is present in humans in a telomeric copy, SMN1, and several centromeric copies, SMN2. Homozygous mutation of SMN1 is associated with proximal spinal muscular atrophy (SMA), a severe motor neuron disease characterized by early childhood onset of progressive muscle weakness1,2,3,4,5. To understand the functional role of SMN1 in SMA, we produced mouse lines deficient for mouse Smn and transgenic mouse lines that expressed human SMN2. Smn−/− mice died during the peri-implantation stage. In contrast, transgenic mice harbouring SMN2 in the Smn−/− background showed pathological changes in the spinal cord and skeletal muscles similar to those of SMA patients. The severity of the pathological changes in these mice correlated with the amount of SMN protein that contained the region encoded by exon 7. Our results demonstrate that SMN2 can partially compensate for lack of SMN1. The variable phenotypes of Smn−/−SMN2 mice reflect those seen in SMA patients, providing a mouse model for this disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of mouse Smn.
Figure 2: Generation of SMA-like mice.
Figure 3: Phenotypes of SMA-like mice.
Figure 4: Histological analysis of SMA-like mice.
Figure 5: Expression of human SMN2 and SMN-related proteins in SMA-like mice.

Similar content being viewed by others

References

  1. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Lefebvre, S., Bürglen, L., Frezal, J., Munnich, A. & Melki, J. The role of the SMN gene in proximal spinal muscular atrophy. Hum. Mol. Genet. 7, 1531–1536 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Hahnen, E., Schonling, J., Rudnik-Schöneborn, S., Zerres, K. & Wirth, B. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: new insights into molecular mechanisms responsible for the disease. Am. J. Hum. Genet. 59, 1057–1065 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. van der Steege, G. et al. Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5. Am. J. Hum. Genet. 59, 834–838 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Parsons, D.W. et al. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am. J. Hum. Genet. 63, 1712–1723 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dubowitz, V. Muscle Disorders in Childhood (W.B. Saunders, London, 1995).

  7. Chou, S.M. & Nonaka, I. Werdnig-Hoffmann disease: proposal of a pathogenetic mechenism. Acta Neuropathol. 41, 45–54 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. Lefebvre, S. et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nature Genet. 16, 265–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Bergin, A. et al. Identification and characterization of a mouse homologue of the spinal muscular atrophy-determining gene, survival motor neuron. Gene 204, 47–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Burghes, A.H.M. When is a deletion not a deletion? When it is converted. Am. J. Hum. Genet. 61, 9–15 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Melki, J. Spinal muscular atrophy. Curr. Opin. Neurol. 10, 381–385 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Dimitar, K. et al. Differential SMN2 expression associated with SMA severity. Nature Genet. 20, 230–231 (1998).

    Article  Google Scholar 

  13. Monani, U.R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8, 1177–1183 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Francis, J.W., Sandrock, A.W., Bhide, P.G., Vonsattel, J.P. & Brown, R.H. Heterogeneity of subcellular localization and electrophoretic mobility of survival motor neuron (SMN) protein in mammalian neural cells and tissues. Proc. Natl Acad. Sci. USA 95, 6492–6497 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. La Bella, V., Cisterni, C., Salaun, D. & Pettmann, B. Survival motor neuron (SMN) protein in rat is expressed as different molecular forms and is developmentally regulated. Eur. J. Neurosci. 10, 2913–2923 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Burlet, P. et al. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum. Mol. Genet. 7, 1927–1933 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Coovert, D.D. et al. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6, 1205–1214 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Pellizzoni, L., Charroux, B. & Dreyfuss, G. SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins. Proc. Natl Acad. Sci. USA 96, 11167–11172 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pellizzoni, L., Kataoka, N., Charroux, B. & Dreyfuss, G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95, 615–624 (1999).

    Article  Google Scholar 

  20. Iwahashi, H. et al. Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy. Nature 390, 413–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Strasswimmer, J. et al. Identification of survival motor neuron as a transcriptional activator-binding protein. Hum. Mol. Genet. 8, 1219–1226 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Campbell, L., Potter, A., Ignatius, J., Dubowitz, V. & Davies, K. Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am. J. Hum. Genet. 61, 40–50 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang, J.G. et al. Molecular analysis of survival motor neuron (SMN) and neuronal apoptosis inhibitory protein (NAIP) genes of spinal muscular atrophy patients and their parents. Hum. Genet. 100, 577–581 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Li, H., Zeitler, P.S., Valerius, M.T., Small, K. & Potter, S.S. Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J. 15, 714–724 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Hogan, B., Boddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, New York, 1994).

  27. Hendrey, J., Lin, D. & Dziadek, M. Developmental analysis of the Hba (th-J) mouse mutation: effects on mouse peri-implantation development and identification of two candidate genes. Dev. Biol. 172, 253–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, L. et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl Acad. Sci. USA 89, 5847–5851 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schreiber, E., Matthias, P., Muller, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res. 17, 6419 (1989).

  30. Laemmli, U.K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K.T. Yeh and Y.H. Chuang for preparation and analysis of histopathological samples; H.H. Lee and F.C. Wu for technical assistance; and B.J. Aronow, S.S. Potter, M.D. Collins, K.B. Choo, T.Y. Chen, B.W. Soong and Y.H. Lee for their critical reading of the manuscript. This work was supported in part by Research Grants NSC-87-2311-B001-041-B25 and NSC-89-2320-B039-002 from the National Science Council, Republic of China. H.H.-L. was supported by a postdoctoral fellowship from Academia Sinica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh-Li, H., Chang, JG., Jong, YJ. et al. A mouse model for spinal muscular atrophy. Nat Genet 24, 66–70 (2000). https://doi.org/10.1038/71709

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing