Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements

Abstract

In the frontal lobe of primates, two areas play a role in visually guided eye movements: the frontal eye fields (FEF) and the medial eye fields (MEF) in dorsomedial frontal cortex. Previously, FEF lesions have revealed only mild deficits in saccadic eye movements that recovered rapidly. Deficits in eye movements after MEF ablation have not been shown. We report the effects of ablating these areas singly or in combination, using tests in which animals were trained to make saccadic eye movements to paired or multiple targets presented at various temporal asynchronies. FEF lesions produced large and long-lasting deficits on both tasks. Sequences of eye movements made to successively presented targets were also impaired. Much smaller deficits were observed after MEF lesions. Our findings indicate a major, long-lasting loss in temporal ordering and processing speed for visually guided saccadic eye movement generation after FEF lesions and a significant but smaller and shorter-lasting loss after MEF lesions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of saccadic latencies to single targets before and after lesions.
Figure 2: Paired targets presented with varied asynchronies.
Figure 3: Data collected with paired targets having a 40% angular separation.
Figure 4: Pre and post-operative data for percent correct performance are shown for left and right saccadic eye movements made to sequential targets before and after a right MEF lesion (a, b) and before and after a left FEF lesion (c, d).
Figure 5: Performance on the discrimination of time differences.

Similar content being viewed by others

References

  1. Bizzi, E. Discharge of frontal eye field neurons during eye movements in unanesthetized monkeys. Science 157, 1588–1590 ( 1967).

    Article  CAS  Google Scholar 

  2. Bruce, C.J. & Golberg, M.E. Primate frontal eye fields: I.Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985).

    Article  CAS  Google Scholar 

  3. Chen, L.L. & Wise, S.P. Supplementary eye field contrasted with frontal eye field during acquisition of conditional oculomotor associations . J. Neurophysiol. 73, 1122– 1134 (1995).

    Article  CAS  Google Scholar 

  4. Mann, S.E., Thau, R. and Schiller, P.H. Conditional task-related responses in monkey dorsomedial frontal cortex. Exp. Brain Res. 69, 460–468 (1988).

    Article  CAS  Google Scholar 

  5. Robinson, D.A. & Fuchs, A.F. Eye movements evoked by stimulation of frontal eye fields. J. Neurophysiol. 32, 637–648 (1969).

    Article  CAS  Google Scholar 

  6. Russo, G.S. & Bruce, C.J. Neurons in the supplementary eye field of the rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. J. Neurophysiol. 76, 825–848 (1996).

    Article  CAS  Google Scholar 

  7. Schall, J.D. Neuronal activity related to visually-guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. J. Neurophysiol. 66, 530–579 (1991).

    Article  CAS  Google Scholar 

  8. Schlag, J. & Schlag-Rey, M. Evidence for a supplementary eye field. J. Neurophysiol. 57, 179– 200 (1987).

    Article  CAS  Google Scholar 

  9. Shook, B.L., Schlag-Rey, M. & Schlag J. Primate supplementary eye field: I.Comparative aspects of mesencephalic and pontine connections. J. Comp. Neurol. 301, 618–642 (1990).

    Article  CAS  Google Scholar 

  10. Tehovnik, E.J. The dorsomedial frontal cortex: eye and forelimb fields. Behav. Brain Res. 67, 147–163 (1995).

    Article  CAS  Google Scholar 

  11. Tehovnik, E.J. & Lee, K.M. The dorsomedial frontal cortex of the rhesus monkey.Topographic representation of saccades evokes by electrical stimulation. Exp. Brain Res. 96, 430– 442 (1993).

    Article  CAS  Google Scholar 

  12. Deng, S-Y., Goldberg, M.E., Segraves, M.A., Ungerleider, L.G. & Mishkin, M. in Adaptive Processes in the Visual & Oculomotor Systems (eds Keller, E. & Zee, D. S.) 201– 208 (Pergamon, Oxford, 1986).

    Google Scholar 

  13. Dias, E.C., Kiesau, M. & Segraves, M.A. Acute activation and inactivation of macaque frontal eye field with GABA-related drugs. J. Neurophysiol. 74, 2744–2748 (1995).

    Article  CAS  Google Scholar 

  14. Latto, R.A. & Cowey, A. Visual field defects after frontal eye field lesions in monkeys. Brain Res. 30, 1–24 (1971).

    Article  CAS  Google Scholar 

  15. Schiller, P.H., Sandell, J.H. & Maunsell, J.H.R. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J. Neurophysiol. 57, 1033–1049 ( 1987).

    Article  CAS  Google Scholar 

  16. Sommer, M.A. & Tehovnik, E.J. Reversible inactivation of macaque frontal eye field. Exp. Brain Res. 116, 229–249 (1997).

    Article  CAS  Google Scholar 

  17. Ottes, F.P., Van Gisbergen, J.A.M. & Eggermont, J.J. Metrics of saccade responses to visual double stimuli, two different modes. Vision Res. 24, 1169 –1197 (1984).

    Article  CAS  Google Scholar 

  18. Robinson, D.A. Eye movements evoked by collicular stimulation in the alert monkey. Vision Res. 12, 1795–1808 ( 1972).

    Article  CAS  Google Scholar 

  19. Schiller, P.H., True, S.D. & Conway, J.L. Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey. Brain Res. 179, 162–164 (1979).

    Article  CAS  Google Scholar 

  20. Gaymard, B., Pierrot-Deseilligny, C. & Rivaud, S. Impairment of sequences of memory-guided saccades after supplementary motor area lesions. Annals Neurol. 28, 622– 626 (1990).

    Article  CAS  Google Scholar 

  21. Mushiake, H., Inase, M. & Tanji, J. Neuronal activity in the primate premotor, supplementary and precentral motor cortex during visually guided and internally determined sequential movements . J. Neurophysiol. 66, 705– 718 (1991).

    Article  CAS  Google Scholar 

  22. Tanji, J. & Shima K. Role for supplementary motor area cells in planning several movements ahead. Nature 371, 413–416 (1994).

    Article  CAS  Google Scholar 

  23. Schlag, J., Dassonville, P. & Schlag-Rey, M. Interaction of the two frontal eye fields before saccade onset. J. Neurophysiol. 79, 64– 72 (1998).

    Article  CAS  Google Scholar 

  24. Hanes, D.P. & Schall, J.D. Neural control of voluntary movement initiation. Science 274, 427– 430 (1996).

    Article  CAS  Google Scholar 

  25. Hanes, D.P., Patterson, W. F. & Schall, J.D. The role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. J. Neurophysiol. 79, 817–834 (1998).

    Article  CAS  Google Scholar 

  26. Bisiach, E. & Vallar, G. in Handbook of Neuropsychology Vol. 1 (eds Boller, E. & Grafman, J.) 195–222 (Elsevier, Amsterdam, 1988).

    Google Scholar 

  27. Schiller, P.H. in Cognitive Neuroscience of Attention. (ed Richards, J.) 3– 50 (Lawrence Erlbaum, London, 1998).

    Google Scholar 

  28. Keating, E.G., Gooley, S.G., Pratt, S. & Kelsey, J. Removing the superior colliculus silences eye movements normally evoked from stimulation of the parietal and occipital eye fields. Brain Res. 269, 145–148 (1983).

    Article  CAS  Google Scholar 

  29. Schiller, P.H. The effect of superior colliculus ablation on saccades elicited by cortical stimulation . Brain Res. 122, 154–156 (1977).

    Article  CAS  Google Scholar 

  30. Tehovnik, E.J., Lee, K-M. & Schiller, P.H. Stimulation-evoked saccades from the dorsomedial frontal cortex of the rhesus monkey following lesions of the frontal eye fields and superior colliculus. Exp. Brain Res. 98, 179–190 (1994).

    Article  CAS  Google Scholar 

  31. Gottlieb, J.P., Bruce, C.J. & MacAvoy, M.G. Smooth eye movements elicited by microstimulation in the primate frontal eye field. J. Neurophysiol. 69, 786–799 (1993).

    Article  CAS  Google Scholar 

  32. Keating, E.G. Lesions of the frontal eye field impair pursuit eye movements but preserve the predictions driving them. Behav. Brain Res. 53, 91– 104 (1993).

    Article  CAS  Google Scholar 

  33. Lynch, J.C. Saccade initiation and latency deficits after combined lesions of frontal and posterior eye fields in monkeys. J. Neurophysiol. 68, 1913– 1916 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Colby and W. Slocum for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Schiller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiller, P., Chou, Ih. The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements. Nat Neurosci 1, 248–253 (1998). https://doi.org/10.1038/693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing