Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nociceptive and thermoreceptive lamina I neurons are anatomically distinct

Abstract

Pain and temperature stimuli activate neurons of lamina I within the dorsal horn of the spinal cord, and although these neurons can be classified into three basic morphological types and three major physiological classes, earlier studies did not establish a structure/function correlation between their morphology and their physiological responses. We recorded and intracellularly labeled 38 cat lamina I neurons. All 12 fusiform cells were nociceptive-specific, responsive only to pinch and/or heat. All 11 pyramidal cells were thermoreceptive-specific, responsive only to innocuous cooling. Of ten multipolar cells, six were polymodal, responsive to heat, pinch and cold, and four were nociceptive-specific. Five unclassified cells had features consistent with this pattern. These results support the view that central pain and temperature pathways contain anatomically discrete sets of modality-selective neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intracellular responses of NS, COLD and HPC cells.
Figure 2: Intracellular responses of different classes of lamina I cells to prolonged current injection (0.5 nA, 500–600 ms, indicated by the bars).
Figure 6: Digital photomicrographs of intracellularly stained, identified lamina I neurons.
Figure 7: Camera lucida reconstructions of the full dendritic extent of one example of each of the identified functional/morphological categories of lamina I neurons.
Figure 3: Camera-lucida drawings of the soma and proximal dendrites of each identified NS cell.
Figure 4: Camera-lucida drawings of the soma and proximal dendrites of each identified COLD cell.
Figure 5: Camera-lucida drawings of the soma and proximal dendrites of each identified HPC cell.

Similar content being viewed by others

References

  1. Perl, E.R. in Handbook of Physiology, Section 1, The Nervous System, Volume III, Sensory Processes (ed. Darian-Smith, I.) 915–975 (American Physiological Society, Bethesda, 1984).

    Google Scholar 

  2. Willis, W.D. The Pain System. (Karger, Basel, 1985).

    Google Scholar 

  3. Craig, A.D. in Somesthesis and the Neurobiology of the Somatosensory Cortex (eds Franzen, O., Johansson, R. & Terenius, L.) 27–39 ( Birkhäuser, Basel, 1996).

    Book  Google Scholar 

  4. Craig, A.D., Bushnell, M.C., Zhang, E.-T. & Blomqvist, A. A thalamic nucleus specific for pain and temperature sensation. Nature 372, 770–773 (1994).

    Article  CAS  Google Scholar 

  5. Coghill, R.C. et al. Distributed processing of pain and vibration by the human brain. J.Neurosci. 14, 4095–4108 (1994).

    Article  CAS  Google Scholar 

  6. Craig, A.D., Reiman, E.M., Evans, A. & Bushnell, M.C. Functional imaging of an illusion of pain. Nature 384, 258–260 (1996).

    Article  CAS  Google Scholar 

  7. Wall, P.D. Pain in the brain and lower parts of the anatomy. Pain 62, 389–391 (1995).

    Article  CAS  Google Scholar 

  8. Light, A.R., Trevino, D.L. & Perl, E.R. Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J. Comp. Neurol. 186, 151–172 (1979).

    Article  CAS  Google Scholar 

  9. Light, A.R., Sedivec, M.J., Casale, E.J. & Jones, S.L. Physiological and morphological characteristics of spinal neurons projecting to the parabrachial region of the cat. Somatosens. Mot. Res. 10, 309–325 (1993).

    Article  CAS  Google Scholar 

  10. Bennett, G.J., Abdelmoumene, M., Hayashi, H., Hoffert, M.J. & Dubner, R. Spinal cord layer I neurons with axon collaterals that generate local arbors. Brain Res. 209, 421–426 (1981).

    Article  CAS  Google Scholar 

  11. Molony, V., Steedman, W.M., Cervero, F. & Iggo, A. Intracellular marking of identified neurones in the superficial dorsal horn of the cat spinal cord . Q. J. Exp. Physiol. 66, 211– 223 (1981).

    Article  CAS  Google Scholar 

  12. Hoffert, M.J., Miletic, V., Ruda, M.A. & Dubner, R. Immunocytochemical identification of serotonin axonal contacts on characterized neurons in laminae I and II of the cat dorsal horn. Brain Res. 267, 361–364 (1983).

    Article  CAS  Google Scholar 

  13. Woolf, C.J. & Fitzgerald, M. The properties of neurones recorded in the superficial dorsal horn of the rat spinal cord. J. Comp. Neurol. 221, 313–328 (1983).

    Article  CAS  Google Scholar 

  14. Miletic, V., Hoffert, M.J., Ruda, M.A., Dubner, R. & Shigenaga, Y. Serotoninergic axonal contacts on identified cat spinal dorsal horn neurons and their correlation with nucleus raphe magnus stimulation . J. Comp. Neurol. 228, 129– 141 (1984).

    Article  CAS  Google Scholar 

  15. Steedman, W.M., Molony, V. & Iggo, A. Nociceptive neurones in the superficial dorsal horn of cat lumbar spinal cord and their primary afferent inputs. Exp. Brain Res. 58, 171–182 (1985).

    Article  CAS  Google Scholar 

  16. Hylden, J.L.K., Hayashi, H., Dubner, R. & Bennett, G.J. Physiology and morphology of the lamina I spinomesencephalic projection. J. Comp. Neurol. 247, 505–515 ( 1986).

    Article  CAS  Google Scholar 

  17. Moschovakis, A.K., Burke, R. & Fyffe, R. The size and dendritic structure of HRP-labeled gamma motoneurons in the cat spinal cord. J. Comp. Neurol. 311, 531–545 (1991).

    Article  CAS  Google Scholar 

  18. Tamamaki, N., Uhrich, D.J. & Sherman, S.M. Morphology of physiologically identified retinal X and Y axons in the cat's thalamus and midbrain as revealed by intraxonal injection of biocytin. J. Comp. Neurol. 354, 583–607 (1995).

    Article  CAS  Google Scholar 

  19. Christensen, B.N. & Perl, E.R. Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J. Neurophysiol. 33, 293–307 (1970).

    Article  CAS  Google Scholar 

  20. Craig, A.D. & Hunsley, S.J. Morphine enhances the activity of thermoreceptive cold-specific lamina I spinothalamic neurons in the cat . Brain Res. 558, 93– 97 (1991).

    Article  CAS  Google Scholar 

  21. Craig, A.D. & Serrano, L.P. Effects of systemic morphine on lamina I spinothalamic tract neurons in the cat. Brain Res. 636, 233–244 ( 1994).

    Article  CAS  Google Scholar 

  22. Craig, A.D. & Bushnell, M.C. The thermal grill illusion: unmasking the burn of cold pain. Science 265, 252–255 (1994).

    Article  CAS  Google Scholar 

  23. Dostrovsky, J.O. & Craig, A.D. Cooling-specific spinothalamic neurons in the monkey. J. Neurophysiol. 76, 3656–3665 (1996).

    Article  CAS  Google Scholar 

  24. Ferrington, D.G., Sorkin, L.S. & Willis, W.D. Responses of spinothalamic tract cells in the superficial dorsal horn of the primate lumbar spinal cord. J. Physiol. (Lond.) 388, 681–703 ( 1987).

    Article  CAS  Google Scholar 

  25. Price, D.D., Hayes, R.L., Ruda, M. & Dubner, R. Spatial and temporal transformations of input to spinothalamic tract neurons and their relation to somatic sensations. J. Neurophysiol. 41, 933–947 (1978).

    Article  CAS  Google Scholar 

  26. Craig, A.D. Jr. & Kniffki, K.-D. Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat. J. Physiol. (Lond.) 365, 197–221 (1985).

    Article  CAS  Google Scholar 

  27. Gobel, S. Golgi studies of the neurons in layer I of the dorsal horn of the medulla (trigeminal nucleus caudalis). J. Comp. Neurol. 180, 375–394 (1978).

    Article  CAS  Google Scholar 

  28. Lima, D. & Coimbra, A. A Golgi study of the neuronal population of the marginal zone (lamina I) of the rat spinal cord. J. Comp. Neurol. 244, 53–71 ( 1986).

    Article  CAS  Google Scholar 

  29. Zhang, E.T., Han, Z.S. & Craig, A.D. Morphological classes of spinothalamic lamina I neurons in the cat. J. Comp. Neurol. 367, 537–549 (1996).

    Article  CAS  Google Scholar 

  30. Zhang, E.T. & Craig, A.D. Morphology and distribution of spinothalamic lamina I neurons in the monkey. J. Neurosci. 17, 3274–3284 (1997).

    Article  CAS  Google Scholar 

  31. Lopez-Garcia, J.A. & King, A.E. Membrane properties of physiologically classified rat dorsal horn neurons in vitro: Correlation with cutaneous sensory afferent input. Eur. J. Neurosci. 6, 998–1007 (1994).

    CAS  Google Scholar 

  32. Dostrovsky, J.O., Shah, Y. & Gray, B.G. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II.Effects on medullary dorsal horn nociceptive and nonnociceptive neurons. J. Neurophysiol. 49, 948–960 (1983).

    Article  CAS  Google Scholar 

  33. Mokha, S.S., Goldsmith, G.E., Hellon, R.F. & Puri, R. Hypothalamic control of nocireceptive and other neurones in the marginal layer of the dorsal horn of the medulla (trigeminal nucleus caudalis) in the rat. Exp. Brain Res. 65, 427–436 (1987).

    Article  CAS  Google Scholar 

  34. Menendez, L., Bester, H., Besson, J.M. & Bernard, J.F. Parabrachial area: Electrophysiological evidence for an involvement in cold nociception. J. Neurophysiol. 75, 2099–2116 (1996).

    Article  CAS  Google Scholar 

  35. De Koninck, Y. & Henry, J.L. Substance P-mediated slow excitatory postsynaptic potential elicited in dorsal horn neurons in vivo by noxious stimulation. Proc. Natl Acad. Sci. USA 88, 11344–11348 (1991).

    Article  CAS  Google Scholar 

  36. Brown, J.L. et al. Morphological characterization of substance P receptor-immunoreactive neurons in the rat spinal cord and trigeminal nucleus caudalis. J. Comp. Neurol. 356, 327–344 ( 1995).

    Article  CAS  Google Scholar 

  37. Marshall, G.E., Shehab, S.A.S., Spike, R.C. & Todd, A.J. Neurokinin-1 receptors on lumbar spinothalamic neurons in the rat. Neuroscience 72, 255–263 (1996).

    Article  CAS  Google Scholar 

  38. Lima, D., Avelino, A. & Coimbra, A. Morphological characterization of marginal (lamina I) neurons immunoreactive for substance P, enkephalin, dynorphin and gamma-aminobutyric acid in the rat spinal cord. J. Chem. Neuroanat. 6, 43–52 (1993).

    Article  CAS  Google Scholar 

  39. Sun, M.-K. & Spyer, K.M. Nociceptive inputs into rostral ventrolateral medulla-spinal vasomotor neurones in rats. J. Physiol. (Lond.) 436, 685–700 (1991).

    Article  CAS  Google Scholar 

  40. Cervero, F. & Tattersall, J.E.H. Somatic and visceral inputs to the thoracic spinal cord of the cat: marginal zone (lamina I) of the dorsal horn. J. Physiol. (Lond.) 383, 383 –395 (1987).

    Article  Google Scholar 

  41. MacIver, M.B. & Tanelian, D.L. Activation of C fibers by metabolic perturbations associated with tourniquet ischemia. Anesthesiology 76, 617–623 ( 1992).

    Article  CAS  Google Scholar 

  42. Pickar, J.G., Hill, J.M. & Kaufman, M.P. Dynamic exercise stimulates group III muscle afferents . J. Neurophysiol. 71, 753– 760 (1994).

    Article  CAS  Google Scholar 

  43. Schmelz, M., Schmidt, R., Bickel, A., Handwerker, H.O. & Torebjörk, H.E. Specific C-receptors for itch in human skin. J. Neurosci. 17, 8003– 8008 (1997).

    Article  CAS  Google Scholar 

  44. Woolf, C.J., Shortland, P. & Sivilotti, L.G. Sensitization of high mechanothreshold superficial dorsal horn and flexor motor neurones following chemosensitive primary afferent activation . Pain 58, 141–155 (1994).

    Article  CAS  Google Scholar 

  45. Craig, A.D. Propriospinal input to thoracolumbar sympathetic nuclei from cervical and lumbar lamina I neurons in the cat and the monkey. J. Comp. Neurol. 331, 517–530 (1993).

    Article  CAS  Google Scholar 

  46. Craig, A.D. Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey . J. Comp. Neurol. 361, 225– 248 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Elizabeth O'Campo, Maribeth Tatum, and Jan Carey for assistance. This work was supported by NIH grants NS 25616 and DA 07402 and the James R. Atkinson Pain Research Fund administered by the Barrow Neurological Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.D. Craig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, ZS., Zhang, ET. & Craig, A. Nociceptive and thermoreceptive lamina I neurons are anatomically distinct . Nat Neurosci 1, 218–225 (1998). https://doi.org/10.1038/665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/665

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing