Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein

Abstract

Peptides derived from proteolytic processing of the β–amyloid precursor protein (APP), including the amyloid–β peptide, are important for the pathogenesis of Alzheimer's dementia. We found that transgenic mice overexpressing APP have a profound and selective impairment in endothelium–dependent regulation of the neocortical microcirculation. Such endothelial dysfunction was not found in transgenic mice expressing both APP and superoxide dismutase–1 (SOD1) or in APP transgenics in which SOD was topically applied to the cerebral cortex. These cerebrovascular effects of peptides derived from APP processing may contribute to the alterations in cerebral blood flow and to neuronal dysfunction in Alzheimer's dementia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of endothelium–dependent vasodilators and vasocontrictors on cerebral blood flow in nontransgenic mice (APP-/SOD1-) and in littermates overexpressing APP (APP+/SOD1-), SOD1 (APP-/SOD1+) or both APP and SOD1 (APP+/SOD1+).
Figure 2
Figure 3: Brain Aβ levels in Tg1130H–derived APP+/SOD1- or APP+/SOD1+, and in transgene–positive FVB/N Tg6209 mice.
Figure 4: Electron micrographs of thin sections from parietal cortex of mice.
Figure 5: Effect of topical application of SOD to the cerebral cortex on CBF responses in Tg6209 APP+ and APP- littermates.

Similar content being viewed by others

References

  1. Lendon, C. L., Ashall, F. & Goate, A. M. Exploring the etiology of Alzheimer disease using molecular genetics. JAMA 277, 825– 831 (1997).

    Article  CAS  Google Scholar 

  2. Mattson, M. P. Cellular actions of beta–amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77, 1081–1132 (1997).

    Article  CAS  Google Scholar 

  3. Smith, M. A. et al. Amyloid–beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J. Neurochem. 70, 2212–2215 (1998).

    Article  CAS  Google Scholar 

  4. Hensley, K. et al. A model for beta–amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 3270– 3274 (1994).

    Article  CAS  Google Scholar 

  5. Yan, S. D. et al. RAGE and amyloid–beta peptide neurotoxicity in Alzheimer's disease. Nature 382, 685– 691 (1996).

    Article  CAS  Google Scholar 

  6. Behl, C., Davis, J. B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77, 817–827 (1994).

    Article  CAS  Google Scholar 

  7. Thomas, T., Thomas, G., McLendon, C., Sutton, T. & Mullan, M. β–amyloid–mediated vasoactivity and vascular endothelial damage. Nature 380, 168–171 (1996).

    Article  CAS  Google Scholar 

  8. Thomas, T., McLendon, C., Sutton, E. T. & Thomas, G. Cerebrovascular endothelial dysfunction mediated by beta–amyloid. Neuroreport 8, 1387–1391 (1997).

    Article  CAS  Google Scholar 

  9. Crawford, F., Suo, Z., Fang, C. & Mullan, M. Characteristics of the in vitro vasoactivity of beta–amyloid peptides. Exp. Neurol. 150, 159–168 ( 1998).

    Article  CAS  Google Scholar 

  10. Blanc, E. M., Toborek, M., Mark, R. J., Hennig, B. & Mattson, M. P. Amyloid beta–peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells. J. Neurochem. 68, 1870–1881 (1997).

    Article  CAS  Google Scholar 

  11. Hsiao, K. K. et al. Age–related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15, 1203–1218 ( 1995).

    Article  CAS  Google Scholar 

  12. Wong, P. C. et al. An adverse property of a familial ALS–linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  Google Scholar 

  13. Sobey, C. G. & Faraci, F. M. Effects of a novel inhibitor of guanylyl cyclase on dilator responses of mouse cerebral arterioles. Stroke 28, 837–843 ( 1997).

    Article  CAS  Google Scholar 

  14. Rosenblum, W. I., McDonald, M. & Wormley, B. Calcium ionophore and acetylcholine dilate arterioles on the mouse brain by different mechanisms. Stroke 20, 1391–1395 (1989).

    Article  CAS  Google Scholar 

  15. Rosenblum, W. I. Endothelial dependent relaxation demonstrated in vivo in cerebral arterioles. Stroke 17, 494–497 (1986).

    Article  CAS  Google Scholar 

  16. Sobey, C. G., Heistad, D. D. & Faraci, F. M. Mechanisms of bradykinin–induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke 28, 2290–2294 ( 1997).

    Article  CAS  Google Scholar 

  17. Mayhan, W. G. Role of activation of bradykinin B2 receptors in disruption of the blood–brain barrier during acute hypertension. Brain Res. 738, 337–341 (1996).

    Article  CAS  Google Scholar 

  18. Rosenblum, W. I. & Nelson, G. H. Endothelium dependence of dilation of pial arterioles in mouse brain by calcium ionophore. Stroke 19, 1379–1382 (1988).

    Article  CAS  Google Scholar 

  19. Wang, Q., Pelligrino, D. A., Koenig, H. M. & Albrecht, R. F. The role of endothelium and nitric oxide in rat arteriolar dilatory responses to CO2 in vivo. J. Cereb. Blood Flow Metab. 14, 944–951 (1994).

    Article  CAS  Google Scholar 

  20. Faraci, F. M., Williams, J. K., Breese, K. R., Armstrong, M. L. & Heistad, D. D. Atherosclerosis potentiates constrictor responses of cerebral and ocular blood vessels to thromboxane in monkeys. Stroke 20, 242– 247 (1989).

    Article  CAS  Google Scholar 

  21. Mayhan, W. G., Faraci, F. M. & Heistad, D. D. Responses of cerebral arterioles to adenosine 5´–diphosphate, serotonin, and the thromboxane analogue U–46619 during chronic hypertension. Hypertension 12, 556–561 (1988).

    Article  CAS  Google Scholar 

  22. Carlson, G. A. et al. Genetic modification of the phenotypes produced by amyloid precursor protein overexpression in transgenic mice. Hum. Mol. Genet. 6, 1951–1959 ( 1997).

    Article  CAS  Google Scholar 

  23. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99– 102 (1996).

    Article  CAS  Google Scholar 

  24. Stamler, J. S. A radical vascular connection. Nature 380, 108–111 (1996).

    CAS  PubMed  Google Scholar 

  25. Mohazzab, K. M., Kaminski, P. M. & Wolin, M. S. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am. J. Physiol. 266, H2568–2572 (1994).

    CAS  PubMed  Google Scholar 

  26. Wang, P. et al. Overexpression of human copper, zinc–superoxide dismutase (SOD1) prevents postischemic injury. Proc. Natl. Acad. Sci. USA 95, 4556–4560 ( 1998).

    Article  CAS  Google Scholar 

  27. Yang, S. T., Mayhan, W. G., Faraci, F. M. & Heistad, D. D. Endothelium–dependent responses of cerebral blood vessels during chronic hypertension. Hypertension 17, 612– 618 (1991).

    Article  CAS  Google Scholar 

  28. Wei, E. P., Kontos, H. A., Christman, C. W., DeWitt, D. S. & Povlishock, J. T. Superoxide generation and reversal of acetylcholine–induced cerebral arteriolar dilation after acute hypertension. Circ. Res. 57, 781– 787 (1985).

    Article  CAS  Google Scholar 

  29. Mayhan, W. G. Impairment of endothelium–dependent dilatation of basilar artery during chronic hypertension. Am. J. Physiol. 259, H1455–1462 (1990).

    CAS  PubMed  Google Scholar 

  30. Sobey, C. G., Faraci, F. M., Piegors, D. J. & Heistad, D. D. Effect of short–term regression of atherosclerosis on reactivity of carotid and retinal arteries. Stroke 27, 927–933 (1996).

    Article  CAS  Google Scholar 

  31. Faraci, F. M. & Heistad, D. D. Regulation of the cerebral circulation: Role of endothelium and potassium channels. Physiol. Rev. 78, 53–97 (1998).

    Article  CAS  Google Scholar 

  32. Zhang, F., Eckman, C., Younkin, S., Hsiao, K. K. & Iadecola, C. Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein. J. Neurosci. 17, 7655–7661 (1997).

    Article  CAS  Google Scholar 

  33. Mentis, M. J. et al. Visual cortical dysfunction in Alzheimer's disease evaluated with a temporally graded "stress test" during PET. Am. J. Psychiatry 153, 32–40 ( 1996).

    Article  CAS  Google Scholar 

  34. Jagust, W. J., Eberling, J. L., Reed, B. R., Mathis, C. A. & Budinger, T. F. Clinical studies of cerebral blood flow in Alzheimer's disease. Ann. NY Acad. Sci. 826, 254–262 (1997).

    Article  CAS  Google Scholar 

  35. Hock, C. et al. Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer's disease monitored by means of near–infrared spectroscopy (NIRS)—correlation with simultaneous rCBF–PET measurements. Brain Res. 755, 293–303 (1997).

    Article  CAS  Google Scholar 

  36. Warkentin, S. & Passant, U. Functional imaging of the frontal lobes in organic dementia. Regional cerebral blood flow findings in normals, in patients with frontotemporal dementia and in patients with Alzheimer's disease, performing a word fluency test. Dement. Geriatr. Cogn. Disord. 8, 105–109 ( 1997).

    Article  CAS  Google Scholar 

  37. Hatake, K., Kakishita, E., Wakabayashi, I., Sakiyama, N. & Hishida, S. Effect of aging on endothelium–dependent vascular relaxation of isolated human basilar artery to thrombin and bradykinin. Stroke 21, 1039–1043 (1990).

    Article  CAS  Google Scholar 

  38. Mayhan, W. G., Faraci, F. M., Baumbach, G. L. & Heistad, D. D. Effects of aging on responses of cerebral arterioles. Am. J. Physiol. H1138–1143 (1990).

  39. Johnson, K.A. et al. Preclinical prediction of Alzheimer's disease using SPECT. Neurology 50, 1563–1571 (1998).

    Article  CAS  Google Scholar 

  40. Sano, M. et al. A controlled trial of selegiline, alpha–tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N. Engl. J. Med. 336, 1216– 1222 (1997).

    Article  CAS  Google Scholar 

  41. Scott, M. R., Kohler, R., Foster, D. & Prusiner, S. B. Chimeric prion protein expression in cultured cells and transgenic mice. Protein Sci. 1, 986–997 ( 1992).

    Article  CAS  Google Scholar 

  42. Harris, E. D. Copper as a cofactor and regulator of copper, zinc superoxide dismutase. J. Nutr. 122, 636–640 ( 1992).

    Article  CAS  Google Scholar 

  43. Multhaup, G. et al. The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I). Science 271, 1406–1409 (1996).

    Article  CAS  Google Scholar 

  44. Nebot, C. et al. Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal. Biochem. 214, 442–451 ( 1993).

    Article  CAS  Google Scholar 

  45. Iadecola, C. & Reis, D. J. Continuous monitoring of cerebrocortical blood flow during stimulation of the cerebellar fastigial nucleus: A study by laser–doppler flowmetry. J. Cereb. Blood Flow Metab. 10, 608–617 (1990).

    Article  CAS  Google Scholar 

  46. Zhang, F., Slungaard, A., Vercellotti, G. M. & Iadecola, C. Superoxide–dependent cerebrovascular effects of homocysteine. Am. J. Physiol. 274, R1704–1711 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NS34179, NS37853, NS35806 to C.I.; NS33249 to K.K.H; AG10681 to G.A.C.) and the Fraternal Order of Eagles (G.A.C.). We thank G. Perry for the oxidative stress data and Karen MacEwan for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Iadecola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iadecola, C., Zhang, F., Niwa, K. et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 2, 157–161 (1999). https://doi.org/10.1038/5715

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing