Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein interaction maps for complete genomes based on gene fusion events

Abstract

A large-scale effort to measure, detect and analyse protein–protein interactions using experimental methods is under way1,2. These include biochemistry such as co-immunoprecipitation or crosslinking, molecular biology such as the two-hybrid system or phage display, and genetics such as unlinked noncomplementing mutant detection3. Using the two-hybrid system4, an international effort to analyse the complete yeast genome is in progress5. Evidently, all these approaches are tedious, labour intensive and inaccurate6. From a computational perspective, the question is how can we predict that two proteins interact from structure or sequence alone. Here we present a method that identifies gene-fusion events in complete genomes, solely based on sequence comparison. Because there must be selective pressure for certain genes to be fused over the course of evolution, we are able to predict functional associations of proteins. We show that 215 genes or proteins in the complete genomes of Escherichia coli, Haemophilus influenzae and Methanococcus jannaschii are involved in 64 unique fusion events. The approach is general, and can be applied even to genes of unknown function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart of the algorithm.
Figure 2: Representation of protein interaction maps for the most likely interactions predicted for E. coli, H. influenzae and M. jannaschii.
Figure 3: The dependence of the number of true and false positive hits with respect to the Z-score threshold used.

Similar content being viewed by others

References

  1. Mendelsohn,A. R. & Brent,R. Protein interaction methods—toward an endgame. Science 284, 1948–1950 (1999).

    Article  CAS  Google Scholar 

  2. Blackstock,W. P. & Weir,M. P. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17, 121–127 (1999).

    Article  CAS  Google Scholar 

  3. Phizicky,E. M. & Fields,S. Protein–protein interactions: methods for detection and analysis. Microbiol. Rev. 59, 94–123 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Luban,J. & Goff,S. P. The yeast two-hybrid system for studying protein–protein interactions. Curr. Opin. Biotechnol. 6, 59–64 (1995).

    Article  CAS  Google Scholar 

  5. Lecrenier,N., Foury,F. & Goffeau,A. Two-hybrid systematic screening of the yeast proteome. BioEssays 20, 1–5 (1998).

    Article  CAS  Google Scholar 

  6. Lakey,J. H. & Raggett,E. M. Measuring protein–protein interactions. Curr. Opin. Struct. Biol. 8, 119–123 (1998).

    Article  CAS  Google Scholar 

  7. Janin,J. & Rodier,F. Protein–protein interaction at crystal contacts. Proteins 23, 580–587 (1995).

    Article  CAS  Google Scholar 

  8. Jones,S. & Thornton,J. M. Principles of protein–protein interactions. Proc. Natl Acad. Sci. USA 93, 13–20 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Larsen,T. A., Olson,A. J. & Goodsell,D. S. Morphology of protein–protein interfaces. Structure 6, 421–427 (1998).

    Article  CAS  Google Scholar 

  10. Dandekar,T., Snel,B., Huynen,M. & Bork,P. Conservation of gene order: a finger-print of proteins that physically interact. Trends Biochem. Sci. 23, 324–328 (1998).

    Article  CAS  Google Scholar 

  11. Overbeek,R., Fonstein,M., D'Souza,M., Pusch,G. D. & Maltsev,N. The use of gene clusters to infer functional coupling. Proc. Natl Acad. Sci. USA 96, 2896–2901 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Tamames,J., Casari,G., Ouzounis,C. & Valencia,A. Conserved clusters of functionally related genes in two bacterial genomes. J. Mol. Evol. 44, 66–73 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Pellegrini,M., Marcotte,E. M., Thompson,M. J., Eisenberg,D. & Yeates,T. O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl Acad. Sci. USA 96, 4285–4288 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Bülow,I. Preparation of artificial bifunctional enzymes by gene fusion. Biochem. Soc. Symp. 57, 123–133 (1990).

    PubMed  Google Scholar 

  15. Wales,M. E. & Wild,J. R. Analysis of structure–function relationships by formation of chimeric enzymes produced by gene fusion. Methods Enzymol. 202, 687–706 (1991).

    Article  CAS  Google Scholar 

  16. Burns,D. M., Horn,V., Paluh,J. & Yanofsky,C. Evolution of the tryptophan synthetase of fungi. Analysis of experimentally fused Escherichia coli tryptophan synthetase alpha and beta chains. J. Biol. Chem. 265, 2060–2069 (1990).

    CAS  PubMed  Google Scholar 

  17. Duncan,K., Edwards,R. M. & Coggins,J. R. The Saccharomyces cerevisiae ARO1 gene. An example of the co-ordinate regulation of five enzymes on a single biosynthetic pathway. FEBS Lett. 241, 83–88 (1988).

    Article  CAS  Google Scholar 

  18. Denis-Duphil,M. Pyrimidine biosynthesis in Saccharomyces cerevisiae: the ura2 cluster gene, its multifunctional enzyme product, and other structural or regulatory genes involved in de novo UMP synthesis. Biochem. Cell Biol. 67, 612–631 (1989).

    Article  CAS  Google Scholar 

  19. Ouzounis,C. A. & Kyrpides,N. C. ThiD-TenA: a gene pair fusion in eukaryotes. J. Mol. Evol. 45, 708–711 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Smith,S. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 8, 1248–1259 (1994).

    Article  CAS  Google Scholar 

  21. Welch,G. R. & Easterby,J. S. Metabolic channeling versus free diffusion: transition-time analysis. Trends Biochem. Sci. 19, 193–197 (1994).

    Article  CAS  Google Scholar 

  22. Marcotte,E. M. et al. Detecting protein function and protein–protein interactions from genome sequences. Science 285, 751–753 (1999).

    Article  CAS  Google Scholar 

  23. Altschul,S. F., Gish,W., Miller,W., Myers,E. W. & Lipman,D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  24. Andrade,M. A. et al. Automated genome sequence analysis and annotation. Bioinformatics 15, 391–412 (1999).

    Article  CAS  Google Scholar 

  25. Rivera,M. C., Jain,R., Moore,J. E. & Lake,J. A. Genomic evidence for two functionally distinct gene classes. Proc. Natl Acad. Sci. USA 95, 6239–6244 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Smith,T. F. & Waterman,M. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981).

    Article  CAS  Google Scholar 

  27. Pearson,W. R. Effective protein sequence comparison. Methods Enzymol. 266, 227–258 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Carroll and S. Searle for technical advice. This work was supported by the European Molecular Biology Laboratory and the TMR Programme of the European Commission DGXII (Science, Research and Development). Patent application filed on behalf of the European Molecular Biology Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos A. Ouzounis.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enright, A., Iliopoulos, I., Kyrpides, N. et al. Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86–90 (1999). https://doi.org/10.1038/47056

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/47056

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing