Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP–32 and spinophilin

Abstract

Modulation of AMPA–type glutamate channels is important for synaptic plasticity. Here we provide physiological evidence that the activity of AMPA channels is regulated by protein phosphatase 1 (PP–1) in neostriatal neurons and identify two distinct molecular mechanisms of this regulation. One mechanism involves control of PP–1 catalytic activity by DARPP–32, a dopamine– and cAMP–regulated phosphoprotein highly enriched in neostriatum. The other involves binding of PP–1 to spinophilin, a protein that colocalizes PP–1 with AMPA receptors in postsynaptic densities. The results suggest that regulation of anchored PP–1 is important for AMPA–receptor–mediated synaptic transmission and plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of AMPA currents by a D1–class dopamine receptor agonist and by a protein phosphatase inhibitor.
Figure 2: Regulation of AMPA currents and PP–1 activity by DARPP–32.
Figure 3: Regulation of AMPA currents and of PP–1 anchoring by the spinophilin peptide.

Similar content being viewed by others

References

  1. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366– 375 (1989).

    Article  CAS  Google Scholar 

  2. Beal, M. F. Role of excitotoxicity in human neurological disorders. Curr. Opin. Neurobiol. 2, 657–662 ( 1992).

    Article  CAS  Google Scholar 

  3. Davis, K. L., Kahn. R. S., Ko, G. & Davidson, M. Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry 148, 1474–1486 (1991).

    Article  CAS  Google Scholar 

  4. Seeburg, P. H. The TINS/TIPS lecture: the molecular biology of mammalian glutamate recptor channels. Trends Neurosci. 16, 359– 365 (1993).

    Article  CAS  Google Scholar 

  5. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  Google Scholar 

  6. Gotz, T. et al. Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J. Neurosci. 17, 204–215 (1997).

    Article  CAS  Google Scholar 

  7. Calabresi, P., Maj, R., Pisani, A., Mercuri, N. B. & Bernardi, G. Long–term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12, 4224–4233 ( 1992).

    Article  CAS  Google Scholar 

  8. Calabresi, P., Pisani, A., Mercuri, N. B. & Bernardi, G. The corticostriatal projection: from synaptic plasticity to dysfunction of the basal ganglia. Trends Neurosci. 19, 19–24 (1996).

    Article  CAS  Google Scholar 

  9. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long–term potentiation in the hippocampus. Nature 361, 31–39 ( 1993).

    Article  CAS  Google Scholar 

  10. Manabe, T., Renner, P. & Nicoll, R. A. Postsynaptic contribution to long–term potentiation revealed by the analysis of miniature synaptic currents. Nature 355, 50–55 ( 1992).

    Article  CAS  Google Scholar 

  11. Linden, D. J. Long–term synaptic depression in the mammalian brain. Neuron 12, 457–472 ( 1994).

    Article  CAS  Google Scholar 

  12. Greengard, P., Jen, J., Nairn, A. C. & Stevens, C. F. Enhancement of the glutamate response by cAMP–dependent protein kinase in hippocampal neurons. Science 253, 1135– 1138 (1991).

    Article  CAS  Google Scholar 

  13. Wang, L. Y., Salter M. W. & MacDonald J. F. Regulation of kainate receptors by cAMP–dependent protein kinases and phosphatases. Science 253, 1132–1134 (1991).

    Article  CAS  Google Scholar 

  14. McGlade–McCulloh, E., Yamamoto, H., Tan, S. E., Brickey, D. A. & Soderling, T. R. Phosphorylation and regulation of glutamate receptors by calcium/calmodulin–dependent protein kinase II. Nature 362, 640–642 ( 1993).

    Article  Google Scholar 

  15. Gerfen, C. R. The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu. Rev. Neurosci. 15, 285–320 (1992).

    Article  CAS  Google Scholar 

  16. Surmeier, D. J., Song, W. J. & Yan, Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J. Neurosci. 16, 6579 –6591 (1996).

    Article  CAS  Google Scholar 

  17. Surmeier, D. J., Bargas, J., Hemmings, H. C. Jr, Nairn, A. C. & Greengard, P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14, 385–397 (1995).

    Article  CAS  Google Scholar 

  18. Yan, Z. & Surmeier, D. J. D5 dopamine receptors enhance Zn2+–sensitive GABAA currents in striatal cholinergic interneurons through a protein kinase A/protein phosphatase 1 cascade. Neuron 19, 1115– 1126 (1997).

    Article  CAS  Google Scholar 

  19. Yan, Z., Song, W. J. & Surmeier, D. J. D2 dopamine receptors reduce N–type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane–delimited, protein–kinase–C–insensitive pathway. J. Neurophysiol. 77, 1003– 1015 (1997).

    Article  CAS  Google Scholar 

  20. Cepeda, C., Buchwald, N. A. & Levine, M. S. Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc. Natl. Acad. Sci. USA 90, 9576 –9580 (1993).

    Article  CAS  Google Scholar 

  21. Walaas, S. I., Aswad, D. W. & Greengard, P. A dopamine– and cyclic AMP–regulated phosphoprotein enriched in dopamine–innervated brain regions. Nature 301, 69–71 (1983).

    Article  CAS  Google Scholar 

  22. Hemmings, H. C. Jr et al. DARPP–32, a dopamine–regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase–1. Nature 310, 503–505 (1984).

    Article  CAS  Google Scholar 

  23. Ouimet, C. C., da Cruz e Silva, E. F. & Greengard, P. The alpha and gamma 1 isoforms of protein phosphatase 1 are highly and specifically concentrated in dendritic spines. Proc. Natl. Acad. Sci. USA 92, 3396– 3400 (1995).

    Article  CAS  Google Scholar 

  24. Allen, P., Ouimet, C. & Greengard, P. Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc. Natl. Acad. Sci. USA 94, 9956–9961 (1997).

    Article  CAS  Google Scholar 

  25. Paternain, A. V., Morales, M. & Lerma, J. Selective antagonism of AMPA receptors unmasks kainate receptor–mediated responses in hippocampal neurons. Neuron 14, 185–189 ( 1995).

    Article  CAS  Google Scholar 

  26. Rosenmund, C. & Westbrook, G. L. Calcium–induced actin depolymerization reduces NMDA channel activity. Neuron 10, 805–814 (1993).

    Article  CAS  Google Scholar 

  27. Kwon, Y. G. et al. Characterization of the interaction between DARPP–32 and protein phosphatase 1 (PP–1): DARPP–32 peptides antagonize the interaction of PP–1 with binding proteins. Proc. Natl. Acad. Sci. USA 94, 3536–3541 (1997).

    Article  CAS  Google Scholar 

  28. Fienberg, A. A. et al. DARPP–32: regulator of the efficacy of dopaminergic neurotransmission. Science 281, 838– 842 (1998).

    Article  CAS  Google Scholar 

  29. Roche, K. W., O'Brien, R. J., Mammen, A. L., Bernhardt, J. & Huganir, R. L. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16, 1179–1188 ( 1996).

    Article  CAS  Google Scholar 

  30. Hubbard, M. J. & Cohen, P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18, 172–176 (1993).

    Article  CAS  Google Scholar 

  31. Egloff, M. P. et al. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16, 1876–1887 (1997).

    Article  CAS  Google Scholar 

  32. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075– 2080 (1997).

    Article  CAS  Google Scholar 

  33. Rosenmund, C. et al. Anchoring of protein kinase A is required for modulation of AMPA/kainate receptors on hippocampal neurons. Nature 368, 853–856 (1994).

    Article  CAS  Google Scholar 

  34. Gao, T. et al. cAMP–dependent regulation of cardiac L–type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19, 185– 196 (1997).

    Article  CAS  Google Scholar 

  35. Petralia, R. S. & Wenthold, R. J. Light and electron immunocytochemical localization of AMPA–selective glutamate receptors in the rat brain. J. Comp. Neurol. 318, 329–354 (1992).

    Article  CAS  Google Scholar 

  36. Craig, A. M., Blackstone, C. D., Huganir, R. L. & Banker, G. The distribution of glutamate receptors in cultured rat hippocampal neurons: postsynaptic clustering of AMPA–selective subunits. Neuron 10, 1055–1068 ( 1993).

    Article  CAS  Google Scholar 

  37. Yan, Z. & Surmeier, D. J. Muscarinic (m2/m4) receptors reduce N– and P–type Ca2+ currents in neostriatal cholinergic interneurons through a fast, membrane–delimited, G protein pathway. J. Neurosci. 16, 2592– 2604 (1996).

    Article  CAS  Google Scholar 

  38. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch–clamp techniques for high resolution current recording from cells and cell–free membrane patches. Pfluegers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  39. Cohen, P. et al. Protein phosphatase–1 and protein phosphatase–2A from rabbit skeletal muscle. Methods Enzymol. 159, 390–408 (1988).

    Article  CAS  Google Scholar 

  40. Goslin, K. & Banker, G. in Culturing Nerve Cells (eds Banker, G., Goslin, K.) 251–282 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

Download references

Acknowledgements

We thank Takuo Watanabe for providing [32P]phosphorylase a. This work was supported by a National Parkinson Foundation grant (Z.Y.) and U.S. Public Health Service Grants MH 40899 and DA 10044 (P.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Greengard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Hsieh–Wilson, L., Feng, J. et al. Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP–32 and spinophilin. Nat Neurosci 2, 13–17 (1999). https://doi.org/10.1038/4516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing